http://www.ras.ru/news/shownews.aspx?id=4329e910-91a6-4fa4-980b-c750151b212c&print=1
© 2024 Российская академия наук

Ученые из новосибирского Академгородка создали ключевые наноэлементы для посткремниевой электроники и нейрокомпьютеров

19.02.2020



Подзаголовок: Новые устройства могут использоваться для разработки компьютеров, функционирующих по принципу человеческого мозга

Научной группе из новосибирского Академгородка удалось впервые в мире создать уникальные нанопереключатели — приборы на основе монокристаллов двуокиси ванадия (VO2), которые резко и обратимо изменяют свое сопротивление и при этом демонстрируют рекордную энергоэффективность, сравнимую по эффективности с нейроном, высокое быстродействие и долговечность. Предложенная технология формирования переключателей интегрируется в хорошо развитую кремниевую технологию, что обеспечивает ее дешевизну. Большие массивы таких нанопереключателей перспективны для создания посткремниевой электроники и нейрокомпьютеров, работающих по принципам человеческого мозга.

Подробности исследования сотрудников Института физики полупроводников им. А. В. Ржанова СО РАН и Института неорганической химии им. А.В. Николаева СО РАН опубликованы в престижном научном журнале Nanoscale.

Новый результат — продолжение работы, в ходе которой та же научная группа впервые синтезировала массивы упорядоченных монокристаллов диоксида ванадия. Этот материал — один из самых перспективных для создания компьютеров, функционирующих по принципу человеческого мозга: диоксид ванадия может очень быстро переходить из полупроводникового состояния в металлическое и обратно.

«Переключатель представляет собой нанокристалл двуокиси ванадия с двумя контактами, один из которых — внедренная в кристалл проводящая кремниевая наноигла, с радиусом закругления около 10 нанометров. Благодаря остроте контакта, у его вершины концентрируется электрическое поле и ток, что и обеспечивает малое напряжение переключения из полупроводникового в металлическое состояние. Это обеспечивает рекордную энергоэффективность прибора, которая сравнима с эффективностью нейрона. Для внедрений важно, что прибор практически весь кремниевый и подложка, и наноигла, и второй контакт. Лишь нанокристалл между контактами - двуокись ванадия. Стандартной технологией сформировать такую трехмерную наноструктуру невозможно, тем более что подходящих подложек не существует. В основе нашей технологии лежат обнаруженные нами условия синтеза нанокристалла двуокиси ванадия на вершине кремниевой наноиглы», — объясняет заведующий лабораторией ИФП СО РАН, первый автор статьи в Nanoscale член-корреспондент РАН Виктор Яковлевич Принц.

 

Такие нанопереключатели необходимы для нейроморфных систем как аналоги нейронов. На данный момент плотность сформированных нанопереключателей — миллион на квадратный сантиметр, однако, ее можно увеличить в тысячу раз.

«С диоксидом ванадия мы работаем несколько лет: сначала, как и практически все в мире, исследовали поликристаллические пленки этого соединения. Первый наш значительный успех связан с тем, что мы смогли синтезировать упорядоченные идеально чистые монокристаллы этого соединения. Причем расположение последних задавалось созданными наноструктурами на кремниевой подложке. Сейчас мы продвинулись гораздо дальше — нам удалось создать на их основе полноценные наноприборы с наноконтактами. Наш подход синтеза кристаллов на кончике кремниевых наноигл можно распространить и на другие перспективные полупроводниковые материалы для которых отсутствуют подложки», — отмечает соавтор статьи, научный сотрудник лаборатории физики и технологии трехмерных наноструктур ИФП СО РАН Сергей Владимирович Мутилин.

Важным параметром новых переключателей является их долговечность — более 100 миллиардов переключений без изменений характеристик.

«Исследование выполнялось при финансовой поддержке Российского научного фонда, наши дальнейшие планы — работа по оптимизации нанопереключателей, а также формирование их связанного массива и создание искусственных нейросетей. На этом пути мы еще в самом начале», — добавляет Виктор Принц.

 

Пресс-служба ИФП СО РАН,
Пресс-служба РНФ


 

Иллюстрации:  

(jpg, 56 Kб)

  1. Схематическое изображение нанопереключателя. К кристаллу VO2 с внедренной кремниевой иглой подается электрическое напряжение, в результате чего в нем формируется тонкий проводящий канал. Источник фото: Victor Ya. Prinz et.al. / Nanoscale, 2020

     (jpg, 87 Kб)

  2. Изображение кремниевой иглы, полученное с помощью электронного микроскопа до и после синтеза диоксида ванадия. Слева кремниевая игла до синтеза диоксида ванадия, справа та же кремниевая игла с наращённым на ее вершину нанокристаллом диоксида ванадия. Источник фото: Victor Ya. Prinz et.al. / Nanoscale, 2020

     (jpg, 286 Kб)

  3. Заведующий лабораторией физики и технологии трехмерных наноструктур ИФП СО РАН член-корреспондент РАН Виктор Яковлевич Принц (автор фото Надежда Дмитриева)

     (jpg, 538 Kб)

  4. Научный сотрудник лаборатории физики и технологии трехмерных наноструктур ИФП СО РАН Сергей Владимирович Мутилин (автор фото Виктор Яковлев)