Phys.-Dokl. , vol.39 No.5 , 01.1994 , p. 318-321, language: английский ISSN 1063-7753 Аннотация
b_m\}$ be vectors with nonnegative coordinates, where (a) $a_i$ and $b_j$ are the total widths of the conveyers necessary for the producer $P_i$ and the consumer $C_j$, respectively, with $a_1+\cdots+ a_n= b_1+\cdots+ b_m$; (b) $a_i$ is the total width of the conveyers necessary for an object $O_i$ in order to exchange with other $n- 1$ objects.\par A factory can produce and ship to each plant only conveyers of equal width (or, perhaps, different in the cases (a) and (b)). The problem is to determine the minimal width of conveyers $c({\bold A}, {\bold B})$ in the case (a) and $c({\bold A})$ in the case (b), such that all products by $P_i$, $1\le i\le n$ could be delivered to customers $C_j$, $1\le j\le m$ and the exchange between objects $O_i$, $1\le i\le n$ was possible.\par Below, we formalize these problems and give an algorithm for calculating the values $c({\bold A}, {\bold B})$ and $c({\bold A})$. Ключевые слова
|
Наш адрес: 119991 ГСП-1 Москва В-71, Ленинский просп., 14 Телефон: 938-0309 (Справ. бюро) Факс: (495)954-3320 (Лен.пр.,14), (495)938-1844 (Лен.пр.,32а) | Назад |