http://www.ras.ru/digest/showdnews.aspx?id=1b5e8052-0259-4f31-aa3d-850414057c6b&print=1© 2024 Российская академия наук
Вместе с замгенерального директора НТЦ по науке Евгением Теруковым идем в один из корпусов института, где располагается "солнечный комплекс", как сразу окрестили его специалисты.
- Он призван стать исследовательским для строящегося сейчас в Новочебоксарске самого большого в Европе завода, на котором будет выпускаться до миллиона солнечных модулей в год, - говорит Евгений Иванович. - Выпуск их планируется начать уже в конце текущего года. Средства в его строительство вложены немалые - 21 миллиард рублей...
В основе данного совместного проекта "Роснано" и компании "Реновы" - опыт известной швейцарской компании "Оерликон Солар". Именно там было закуплено основное технологическое и метрологическое оборудование для питерского НТЦ. Одновременно было приобретено также оборудование для исследовательских работ. Кстати, освоив швейцарскую технологию, петербуржцы привнесли в нее много своего, и в производстве тонкопленочных модулей используются теперь именно их разработки.
- Речь идет о фотопреобразователях, благодаря которым солнечный свет сразу превращается в электрическую энергию, - уточняет профессор Теруков. - При этом в наших системах будет использоваться не кристаллический, как принято пока еще в Европе, а аморфный кремний, что значительно дешевле...
На сегодня в НТЦ работают 12 сотрудников, костяк составляют специалисты Института им. А.Ф. Иоффе. Задачи, которые они решают, многогранны. Это исследование и разработка новых материалов, улучшение технологии изготовления солнечных модулей и увеличение срока их службы, а также снижение себестоимости, что позволит реально конкурировать с зарубежными аналогами.
Этапы инновационного производства корреспондент "СОЮЗа" изучала на месте с помощью профессора Терукова.
- Работаем мы со стеклом больших размеров, процесс начинается с его мойки, - Евгений Иванович подводит к плоскому прямоугольному аппарату, напоминающему обеденный стол для большой семьи. - После мойки стекло проходит в чистую зону, где проводится инспекция качества его очистки. Малейший дефект, и оно бракуется. С чистым во всех смыслах стеклом последовательно проводятся операции напыления прозрачного, проводящего покрытия из оксида цинка, аморфного кремния и микрокристаллического кремния. Не буду вдаваться в сложные физические и технические детали, замечу лишь, что напыление пленок кремния осуществляется из газов путем их разложения в плазме. В науке такой процесс называется плазмохимическим разложением силана в газовой фазе. И аморфный кремний, и микрокристаллический, получаемые данным методом, обязательно содержат в себе водород. И в этом достоинство технологии. Потому что в основе работы солнечного элемента лежит так называемый p-n-переход. А он, в свою очередь, возможен при достижении легирования материалов...
Даже не будучи физиком, не раз, как, видимо, многие в нашей стране, слышала об активном применении аморфного кремния в современных промышленных технологиях. Области его использования не ограничиваются солнечной энергетикой. Скажем, на основе этого материала изготовлены рентгеновские сканеры, используемые в аэропортах.
Делают солнечные модули из специального стекла, обладающего высокой прозрачностью (до 96%) и не содержащего железа. В России такое, увы, пока не производится - не было надобности. С открытием физтеховского НТЦ встал вопрос о размещении соответствующего производства на одном из отечественных заводов.
Вся структура модуля, согласно швейцарской технологии, состоит минимум из 8 слоев. Для специалистов питерского центра важно довести количество слоев до 12. Что позволит увеличить КПД модуля с нынешних 8 процентов до 12-15.
Кто-то спросит: в чем все-таки плюс данной нанотехнологии по сравнению с традиционной?
- А в том, что на базе наших солнечных модулей мы собираем энергосистему, в которую входит накопитель энергии, - уточняет Евгений Теруков. - Система эта должна быть оптимизирована для тех, кто ее использует. Скажем, нет смысла устанавливать ее там, где солнечная активность невелика...
Идея с солнечным модулем наверняка заинтересует и тех, кто далек от науки. А именно - рядовых потребителей из числа, например, дачников. Менее чем через год, как обещают в Институте им. А.Ф. Иоффе, начнется производство маломощных, до 3 киловатт, энергосистем, которые можно будет монтировать на крышах загородных домов. Экономя с их помощью себе деньги, государству - электричество.
ПРЯМАЯ РЕЧЬ
Виктор Устинов, заместитель директора по научной работе ФТИ им. А.Ф. Иоффе, член-корреспондент Российской академии наук, координатор союзной программы "Прамень" от ФТИ им. А.Ф. Иоффе:
- Создание на базе нашего института Научно-технического центра по производству солнечных модулей - важнейшее событие не только для самого института, для России, но, безусловно, и для наших коллег из Беларуси. Все новое, что происходит в науке и технике - открытия, технологии, оборудование, - без задержки становится предметом изучения и освоения специалистами с берегов Западной Двины. Не случайно Беларусь слывет в СНГ одним из лидеров использования в производстве самых современных технологий и оборудования. Ученые из Минска внесли большой вклад в физику и технологию полупроводниковых гетероструктур, изобретенных академиком Ж.И. Алферовым, и приборов на их основе. В частности, специалистам многих стран хорошо известны работы белорусских научных школ - Института физики (по нитриду галлия), Института электроники (по светодиодам) и НИИ радиоматериалов (по транзисторам и монолитным схемам). Уверен, исследовательские работы питерского НТЦ по созданию солнечных преобразователей станут еще одной темой для нашей совместной работы. Благо, сотрудничество специалистов нашего института с учеными академии наук Беларуси, НИИ радиоматериалов налажено давно и прочно. Мы активно обмениваемся технологиями, специалистами. Да и идеями тоже! Ведь без совместного творчества в нашем деле никак нельзя.