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This paper reviews of recent works by the author dealing with shock-induced

time-dependent 
ows of condensed materials and accompanying problems of compu-

tational 
uid dynamics. A new regular barrier-type grid generator [1] is considered
in Section 1. Section 2 deals with suppressing false entropy wakes which can arise

in interaction of �nite-di�erence shock waves with boundaries [2]. The instability
of a free aluminum surface due to passage of two successive shocks [3] and shock
compression of graphite in conic targets with channels [4] are considered in Sections

3 and 4 respectively.

1. Elliptic Grid Generator Based on Quasi-1D Grids

A problem of constructing 2D regular grids is considered in the following stan-
dard formulation. The grid G = f~rij; i = 0; : : : ; N ; j = 0; : : : ;Mg; ~rij = (x; y)ij
should be constructed while the boundary grid nodes ~ri0, ~riM , ~r0j, ~rNj are given. The
method [5] is based on minimization of a function I(G) with the following barrier
property. Let D be the set of convex grids (consisting of only convex quadrilateral

cells), @D be its boundary. If G! @D for G 2 D, then Ih(G)! +1. As a result,
Gn 2 D at each iteration step n, which prevents from self-intersecting cells for any
boundary grid lines.

Nevertheless, the method [5] has the drawback which is illustrated by Fig.1.
The grid does not enter the tongues at the down part of the domain. As a result,

the grid cells in the tongues are too large.
Our new grid generator uses positive properties of quasi-1D grids for which the

grid lines of one of two families are straight lines with a given allocation law of grid
points along the lines. We construct the function Q(G) which reaches its minimum

at the quasi-1D grid and consider the function J(G) = Q(G) + "�I(G) where "

is a small parameter, � is the average area of a grid cell introduced to obtain a

dimensionless parameter ". Since this function has the same barrier property as the

function I(G) for any " > 0, the grid generator based on minimization of J(G) is
also very reliable. Fig. 2 shows that the method yields a much more dense grid

inside the tongues, with all grid cells being convex.
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2. Suppressing false entropy wakes

The idea of such suppressing is as follows. Consider the Godunov scheme in

lagrangian variables for a certain grid cell i; j. When solving the Riemann problems

at the cell boundaries, we can determine the maximal entropy Smax among the shock
waves going within the cell. Let Sij be the entropy in the cell at the upper time level

given by the scheme. If Sij < Smax, the values at the upper time level are unchanged.

If Sij > Smax, the thermodynamic functions at the upper time level in the cell are

corrected by the following way. One of the functions, for example the pressure p, is

unchanged while the others are determined on the isentrope corresponding Smax.

Realization of this idea is some more complex. First, the entropies of the
neighboring cells at the lower time level Si+l;j+k, j; k = �1; 0; 1 are also taken into

account in computing Smax. Second, instead of the entropy S, it is more convenient

to use the entropy temperature TS = T (S; ��) for a certain �xed density ��. The
function TS = TS(T; �) is determined by computing the isentrope from the point
(T; �) to ��. In determining (TS)max and (TS)

ij in the cell i; j we put �� = �ij.
In Fig. 3 we illustrate the method with two 1D problems: impact of an alu-

minum plate with the velocity 5 km/s on the rigid wall and interaction of the shock

wave (1 Mbar) in aluminum and a free boundary. Here the entropy temperature TS
is determined for �� being equal to normal aluminum density. It is shown that our
method suppresses the entropy wakes.

In Fig. 4 we use the 2D problem on compression of an aluminum plate on
a lead wedge by a shock wave to illustrate the method. A second order accurate
quasi-monotone scheme with splitting on lagrangian and remapping stages is used

and is called below as the routine scheme. For a variant presented in Fig. 4 a
cumulative jet arises. It is shown that the routine scheme gives an entropy wake
near the free boundary of aluminum which penetrates into the cumulative jet. The
corrected scheme suppresses the wake.

3. Rictmyer-Meshkov Instability. Reshocking at Non-Linear Stage

The instability of an interface between two media with di�erent densities �1
and �2 due to passage of two successive shocks is considered in the case of Atwood

number A = (�2 � �1)=(�2 + �1) < 0. Let a be the perturbation amplitude at the
moment when the second shock reaches the interface and � be the wavelength. If

the relative amplitude � = 2�a=�� 1, the reshocking is described by the Rictmyer
formula: �_a = _a2 � _a1 = �A�v, where _a1 and _a2 are the amplitude growth rate

before and after passage of the second shock, �v is the change of the interface
velocity. The well known freeze-out e�ect [6] is that such value of �v > 0 exists for

which _a2 = 0. The e�ect has no practical utilization since �v depends on �.

We check the hypothesis that the reshocking at non-linear stage (� � 1) is

approximately described by the formula

�_a = ��A�v; �� = const = 1; 25 (1)
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which is independent of �. For this purpose we consider the instability of a free

boundary (A = �1) of an aluminum layer. At the opposite boundary of the layer

a boundary condition initiating two successive shocks is considered. For freeze-

out e�ect ( _a2 = 0) (1) gives �v = � _a1=A�
� where _a1 is determined from a 2D

computation without a second shock. A set of 1D computations allows to determine

parameters of the boundary condition as a function of �v. The results of the

corresponding reshocking are presented in Fig. 5 both for sinusoidal and for non-

sinusoidal (broken line with three segments) initial perturbations. One can see that

the freeze-out e�ect takes place in the all cases.

4. Shock Compression of Graphite in Conic Targets

Graphite compression in lead conic targets with aluminum strikers is simulated

numerically. A model of non-equilibrium phase transition of graphite to diamond
is taken into account. Both the routine conic target and the target with a channel

(Fig. 6) are considered.
Fig. 6 presents one of computed variants. An interesting feature of the 
ow is

connected with the unloading of carbon after shock compression which turns out to

be very similar to 1D unloading of lead and very far from 1D unloading of carbon.
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Figure 1: A domain and a fragment of the grid for the method [5].

Figure 2: The suggested method, " = 10�2.
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Figure 3: (a) Impact on the rigid wall (left side) using the routine scheme (circles)

and the corrected scheme (stars). (b) Interaction of a shock wave and a free boundary
(right side) using the routine scheme (dashed line) and the corrected scheme (solid

line); i is the cell number.

Figure 4: Compression of a plate on a wedge; (a) the scheme of the problem; (b)
isotherms (102 K) in the vicinity of the cumulative jet for the routine scheme; (c)

the same for the corrected scheme.
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Figure 5: Reshocking. (a) Amplitude against time for sinusoidal initial perturbation:
1,2 - � = 0; 1mm, � = 5; 3,4 - � = 0; 05, � = 4; 5,6 - � = 0; 02, � = 3; 9; 1,3,5 - a
certain second shock; 2,4,6 - second shock with the aid of (1). (b) Non-sinusoidal
perturbation, the free boundary at di�erent time instants. (c) Amplitude against
time for (b); 1: without second shock, 2: for the second shock with the aid of (1).

Figure 6: Graphite compression in conic targets. (a) The scheme of the problem.
(b) Boundaries of the carbon volume at di�erent time instants for the routine conic
target. (c) The same for the target with the channel. (d) Pressure in a lagrangian

particle on the axis of symmetry against time; 1: 1D problem with a rough model

of interior destruction of the striker; points: 1D problem without the destruction

taking into account; C: the conical target without the channel; dashed line: the
target with the channel; P: 1D problem with lead instead of carbon.
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