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Abstract

In a finite game with strategic complementarities, every strategy profile is connected to
a Nash equilibrium with a unilateral improvement path. If all but one players' strategies are
scalar, every strategy profile is connected to a Nash equilibrium with a best-response
improvement path. If all players have scalar strategies and each player is only affected by the
sum of the partners' choices (in particular, if there are just two players), every best-response
improvement path eventually leads to a Nash equilibrium.
Keywords. Strategic game; Individual improvement path; Best-response improvement path;
Strategic complementarities
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1. Introduction

Individual myopic adaptation in strategic games has been studied since the time of A.
Cournot. An important step was made recently by Monderer and Shapley (1996), who
established a link between unilateral improvement dynamics and "potential functions" in finite
games.

Milchtaich (1996) singled out three levels of nice behaviour of myopic adaptive
processes in a finite game: (i) there is no infinite unilateral improvement path, i.e. every

improvement path eventually leads to a Nash equilibrium (Monderer and Shapley's FIP
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property); (ii) there is no infinite best-response improvement path (FBRP); (iii) for every
strategy profile there is a best-response improvement path leading from the profile to a Nash
equilibrium (Young's, 1993, weak acyclicity). The last property ensures the convergence to an
equilibrium with probability one of a best-response improvement process with a "sufficiently
random" choice of an improvement at each stage. Young (1993) suggested a more complicated
(and not quite myopic) stochastic scenario under which the property is also a sufficient
condition for convergence. A fourth, weakest property should be added: (iv) for every strategy
profile there is a one-sided improvement path leading from the profile to a Nash equilibrium; it
ensures that such an adaptive process with a "sufficiently random" choice at each stage
converges to an equilibrium with probability one. (It is unclear whether the property could be
given an alternative interpretation in the style of Young, 1993.)

Kukushkin (1999, 2000) suggested to use the language of binary relations: both FIP
and FBRP are easily restated as the acyclicity of appropriate individual domination relations.
A potential is also understood as a strict order rather than a numeric function. Infinite games
allow virtually the same treatment as finite ones if transfinite improvement paths are
considered.

Voorneveld (2000) introduced the notion of a "best-response potential game," devoid
of connections with any reasonable adaptive process, myopic or not. The property implies
FBRP, but is not implied even by FIP, so it has no definite place in Milchtaich's classification.
No natural class of games with this property was produced.

This letter addresses myopic adaptation processes in games with strategic
complementarities (Topkis, 1979; Vives 1990; Milgrom and Roberts, 1990; Milgrom and
Shannon, 1994). Topkis (1979, Algorithm I) proved the convergence of best-response

improvement paths starting from the very bottom (or the very top) of the strategy profiles



space. Vives (1990) extended the result to paths starting "very high" or "very low". Milgrom
and Roberts (1990) considered rather general adaptive learning processes, but did not study
their convergence. Here we are interested in convergence to an equilibrium of improvement
paths with arbitrary starting points.

The main findings are these. In a finite game with strategic complementarities, every
strategy profile is connected to a Nash equilibrium with a one-sided improvement path
(Theorem 4). If the strategies of all players are scalar (which holds for all applications cited by
Vives, 1990, or Milgrom and Roberts, 1990), then there is, at least, the weak acyclicity
property (Theorem 3). If every player is only affected by the sum of the partners' choices
(which holds for economic models such as the private provision of a public good or a public
bad, or Cournot oligopoly), there is the FBRP property (Theorem 2); in the two-person case,

the result is extended to infinite games (Theorem 1).

2. Basic definitions

A strategic game is defined by a finite set of players N and, for each i€ N, a set of
strategies X; and an ordinal utility function u;(x) defined on X =]] ;cy X; . We always
assume that each X; is a compact metric space and each function u; is, at least, upper
semicontinuous in own variable x;; then for each ie N and x_; € X_; =[] ;,; X ; , the best-
response correspondence is well defined:

Ri(x)=1x; € X; | ui(xg,x)=maxy, ey u;(¥i,X)5-

We also define two types of individual improvement relations on X:
yeix o [y =x &u(p)>u;(x)], yex & FieN[y»; x];

y=ix < [yp;x&y;eR(x;)], y=x < 3JieN[y>;x].



By definition, x € X is a Nash equilibrium if and only if x is a maximizer for the relation >,

re.if y>x forno y € X . Under our topological assumptions, the same is true for >.

. . . . k
A Monderer-Shapley (M-S) path is a (finite or infinite) sequence {x };_g; ., such
k+1 k k k+1 . k .
that x> x" whenever x' and x" = are defined. With every M-S path {x };, a function

i(k) 1s associated, uniquely defined by karl > (k) xk. An M-S cycle is an M-S path such that

0 k. . .
x =x" for some m>0 (and x  is defined just for £ =0,1,...m). A Cournot path [cycle] is an

k+1 k
M-S path [cycle] such that x - x" forall k.
From now on, we consider games where each X; is a complete lattice and each utility

function u; has the properties of single crossing in (x;,x_;) (Milgrom and Shannon, 1994)

and of pseudosupermodularity in x; (Agliardi, 2000):
[vi >x; &y_; >x ;1= [sign(u; (y) —u; (x;, y_;)) 2 sign(u; (y;, x ;) —u; (x))] (SC)

sign(max{u; (x; v y;,z_;)—u;(x;,z2_; ) u; (x; vV yi,z_i)—u;(¥;,2_;)}) 2 ®

sign(max{u; (x;,z_;)—u; (x; Ay;,z ;) u; (¥;,z_;))—u;(X; Ay, 2_;)})

where ie N, x;,y; € X;, x_;,y_;,z_; € X_;, and sign(?) 1s -1 if <0, 0 if /=0 and 1 if ~0

_i»
(although subtraction is used in both definitions, the properties themselves are purely ordinal).
(P) is satisfied automatically when X; is a chain, which is quite often the case in the theorems
below.

Lemma. If a game satisfies (SC) and (P), then, for each ie N, x;,y; € X;, and

X,y €X i,

[yoizx; &y, eRi(y_;))&x; eRi(x_;)] = [y;vx;eR(y_;))&y; Ax; e Ri(x_;)].



The statement means that R;(x_;) is a sublattice of X; (pick y_; =x_;) and R;(:) 1s
increasing w.r.t. the strong set order defined by Veinott (see Topkis, 1979).

Indeed, x; €eR;(x_;) 1implies wu;(x)>u;(x; Ay;,x_;), hence, by (P),
uj(x; vy, x_;)zu;(y;,x_;), hence, by (SC), w;(x;vy;,y_;)2u;(y), hence
x; vVy; € R;(y_;). On the other hand, y; € R;(y_;) implies that u;(y)>u;(x; vy;,y_;),
hence, by (SC), u; (y;,x_;)2u;(x; vy;,x_;), hence, by (P), u;(x; Ay;,x_;) 2u;(x), hence
X Ay € Ri(x;).

Remark. The lemma is obviously inspired by Proposition 3 of Agliardi (2000), but is
formally independent of it.

In the following, a game satisfying both (SC) and (P) is called a game with strategic
complementarities.

A game with additive aggregation (an AA game) is characterized by these properties:

each X, is a compact subset of the real line and u;(x)=U,;(x;,, ), where U; 1is

j#i %
defined on X; x S; and S; :Zj¢in :

A game with additive single crossing (an ASC game) is an AA game such that, for each
ieN and xi" >x,«!, the function sign(U; (x,«",si)—U ; (x,«’,sl- )) increases (not necessarily
strictly) in s;. Obviously, an ASC game satisfies both (SC) and (P) above; however, if an AA
game satisfies (SC), it need not be an ASC game unless there are just two players or the

strategy sets are regular enough (e.g. all are closed intervals, or all are integer intervals). A

stronger version of the Lemma holds for ASC games, where x_;,y_; € X_; are replaced with

!

s; ,8; €8, respectively.



3. Results

Theorem 1. Let there be a two-person game with strategic complementarities such that
both strategy sets X; are compact subsets of the real line and both best-response
correspondences R; are upper hemicontinuous. Then every infinite Cournot path converges to

a Nash equilibrium.

. . k . .. .
Let there be an infinite Cournot path {x };_o; . Without restricting generality,

1 0 2k+1 2k 2k+2 2k+1 . 1 0
X >;x ; hence x ~1 X and x =9 X for all k. Since x, =x, and

2 1 2 o . . . . .. .

X >5 X, Xy =X, Is impossible; without restricting generality, we may assume that
2 0 . . 3 2

Xy >xy (we could turn X, upside down if needed). Now we have x >; x , hence

3 2 2 1 0 2 3 1 .
X] €Ry(xy) and x; =x1 € R{(xy)\Ry(x,); therefore, by the Lemma, x; > x;. Repeating

. . . 2k+2 2k+1 2k 2k+3 2k+2 2k+1
the same reasoning inductively, we obtain x, >Xy, =X, and x > X =X

for all &=1,2,...
Now we may argue exactly as in Topkis (1979). Since each X; is compact, there exist

o0 . k . 2k+1 2k ® © . .
x; =limy_,,x; for both i=12. Moreover, (x; ,xp, )—>(xy,xp) implies

0 0 2k+1 2k+2 0 0 . . o 0
X €Rj(xy), and (x; ,x5 )—>(x;,xp) implies xy €Rp(x; ). Therefore,

(xi>O ,x;o ) is a Nash equilibrium.
Theorem 1 obviously implies the absence of Cournot cycles, which, for a finite game,
is equivalent to Milchtaich's FBRP. Generally, the absence of Cournot cycles does not even

imply the existence of an equilibrium, see Example 2 of Kukushkin (1999).



Remark. By the well-known trick with reversing the order on one of the strategy sets,
Theorem 1 can be applied to two-person games with strategic substitutes as well.

Theorem 2. A game with additive single crossing admits no Cournot cycle (hence in a
finite ASC game every Cournot path, if continued while possible, leads to a Nash
equilibrium).

0 -1 0 . . k
Let E={x ,...,xm ,xm =x } be a Cournot cycle in an ASC game. Pick x

L k . k k
maximizing the sum > .\ x; and denote i=i(k), s; =3, x; ; there must be x; & R;(s;),

J#i

k+1 1

e+ ko . _ . .
x; €R;(s;),and x; <x; .Since Z is a cycle, there must be a stage & such that i(h)=i

h+l1 k ! h k ! . .
and x; =x; ;denote s; = Zj 4% (then x; €R;(s; )) and consider three alternatives: If
! h+1 k ! k k _r . k
s; >s;, then zjeN X; o =X bS; > X +s; = ZjeN x; , contradicting the choice of x" . If

! !

k k .
s; =s;, then x; €R;(s;) and x; ¢R;(s;) simultaneously. If s; <s;, then

xik €ER; (sl-, )\R;(s;) and xikﬂ € R;(s;) contradict the Lemma (for ASC games).

Remark. An exact analogue of the theorem is valid for games with additive strategic
substitutes (cf. Kukushkin, 2000, Theorem 6.2); however, the proof is too complicated to be
presented here.

Theorem 3. Let there be a finite game with strategic complementarities such that all

but one players' strategy sets X;, i #1, are chains. Then, for every strategy profile xe X,

there is a (finite) Cournot path leading from x to a Nash equilibrium.



We denote, for every xe X, Y+(x)={yeX|y>x&y>x} and, for every
k
x_1€X_, n(x_;) the greatest element of Rj(x_;). We call a Cournot path {x };

admissible if, whenever xk+l is defined, the following requirements are satisfied:
. . 1
(1) if xlk ¢ Ry (xl_{l), then i(k)=1 and xlk+ =1 (xl_{l);

(i) if xf e R (x") and YT (") 2 @, then X e ¥ T (M.

Let us consider an arbitrary admissible Cournot path; requirement (i) allows us to

. .. . 0 0 0
assume, without restricting generality, that x; € Rj(x_;). Suppose first that ¥ +(x )=3;

1 0 1 1 .
then x;(g) < X0y If there were je N and yeY ! (x") such that y>; x ', then, obviously,

1 0 . . .
and x_; <x_ j3 now the Lemma implies the existence of

10
L =X . j

J#i(0), hence x; =x;
0 0 +, 0 ..
z; €R;(x_;) such that Z;2Yy;, hence (zj,x_;)eY (x): a contradiction. An easy

. . .. + k k+l1 k
recursion using the monotonicity of r; shows that ¥ (x )= and x <x for all

0. . .
k=0,1,..., hence areturn to x 1is impossible.
. +. 0 1 0 . .
Now if ¥V (x )=, then x >x , and, again, an easy recursion shows that

k+1 k k . .
s x" as long as Y +(x )#J, so no cycling is possible here. Let m be the first stage at

which xlm eRy (x_ml) and ¥ (xm) = J. Arguing exactly as in the previous paragraph, we see

that the path cannot return to X"
Theorem 4. For every strategy profile xe X in every finite game with strategic

complementarities, there is a (finite) M-S path leading from x to a Nash equilibrium.



We denote Y+(x)={yeX]y>x&y>x} and ¥ (x)={yeX|y>x&y<x} for

k .. . k+1 . .
every x € X, and call an M-S path {x }; admissible if, whenever x s defined, either

karl € Y+(xk) , or Y+(xk) = and xk+l € Y_(xk) . Arguing virtually in the same way as

in the previous proof, we can see that an admissible cycle is impossible. Let us prove that an

admissible path can only stop at a Nash eqilibrium.

Suppose the contrary: there is x € X such that both Y " (x)=@ and Y (x)=0, but
u;(y;,x_;)>u;(x) for some y; € X; (incomparable with x;). We have x; Ay; <x;, hence
u; (x; Ay x_j)<u;(x)<u;(y;,x_;); similarly, X;Vy; >Xx;, hence
u;(x; vy, x_;)<u;(x)<u;(y;,x_;) . Now we have a contradiction with (P).

Examples showing that the assumptions of the theorems are tight enough are available
from the author. Here I can only list them: even a two-person game with strategic
complementarities need not be weakly acyclic; a two-person game may admit a Cournot cycle
even if the strategy set of one player is a chain; a three-person game may admit a Cournot
cycle even if the strategy sets of all players are chains; a two-person game need not have the

FIP property even if the strategy sets of both players are chains; even a two-person 2x2 game

need not admit a Voorneveld potential.
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