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Consider the problem of representing positive integers n ( 1 by the sums 



  (ni ( m,
(1)

where m ( 0, r ( 2, s ( 1 - are fixed integers [ 1 ].

In connection with this problem, we defined the following two families of the natural numbers sets:


,



,
and the following two arithmetic functions:
G(m,r) = Arg 

 { |N(m,r,s)| < ( },   g(m,r) = Arg 

{ |N(m,r,s)| = |Z(m,r)| },

where |X| is the number of elements of an arbitrary set X.

In [1-3], the Generalized Waring Problem (GWP) was formulated for the first time and its complete solution was given in the form of the following statement.
THEOREM 1. For any  m ( 0, r ( 2  there exist:

(i) the least finite number of summands, g(m, r) < (, and

(ii) the finite invariant set,  Z(m, r) ( ( ,
such, that for any s ( g(m, r), we have   N(m, r, s) = {s mr + z : z ( Z(m, r)}.
Theorem 1 is the solution to a rather natural generalization of the Classical Waring Problem (CWP); the latter was solved by D.Hilbert in 1909; his solution can be formulated in terms of GWP inthe following way:
HILBERT'S THEOREM. For the fixed m = 0 and any r ( 2, there exists the least finite number of summands, g(r) ( g(0, r) < ( such that, for any s ( g(0, r), we have   N(0, r, s) = (.

As is known [4], one of the most important task of CWP is the estimation of the Hilbert functions G(r) and g(r) (or, in terms of GWP, - the functions G(0, r) and g(0, r), respectively). 
In the framework of the GWP, we succeede in obtaining a general estimation of the function G(m, r) of the m-th “level” of the GWP in terms of the function 
g(m-1, r) of the preceding (m-1)-th “level” of the GWP (for all r(2 , simultaneously) (see[5]) by the superinduction method [2,7], which is a new method for proving general mathematical statements of the form (n P(n) with the help of a computer. I recall that the essence of this method consists in constructing an implication of the special form:

(n* Q(n*) ( (n>n* P(n).
(2)
The peculiarity of this implication is that its antecedent is an individual statement, while its consequent is a general statement about properties of natural numbers. If one is able (i) to prove analytically (i.e., deductively) that implication (2) is valide, and (ii) to find (as a rule, with the help of a computer) a unique natural number n* with a very nontrivial set of number-theoretical properties, Q, then  modus ponens would imply the validity of the general statement, (n>n* P(n). The subsequent testing (as a rule, also with the help of a computer or (for values  of n* that are not too large) even with the help of the Cognitive Visualization [2]) of the truth values of the predicate P on the finite set of all n < n*, in principle (of course, if this verification can actually be done), solves the problem: for any n we know the truth value of the expression P(n).

The construction of the implication (2) is the most important stage of the application of the superinduction method. At present, this stage is heuristic, i.e., the implication (2) is to be guessed or devised rather than deducted, because no general theory of the relation between the number-theoretical predicates, Q and P exists. In the case under investigation, the following theorem provides the desired implication.
THEOREM 2. For any m (1, and r (2 the following assertion is valid:
IF
(n*(m, r) Q(n*(m, r)), where Q = (i) & (ii) & (iii),
(i)
n*(m, r) = 


(ii)
for all   s = s = s0,  s0 + 1,  s0 + 2,  ...  ,  s1, 
(3)

(iii)
s1 - s0  (  g(m-1, r),

THEN
( n > n0(m, r) P(n), where
P(n) = " 

,  s*=g(m-1, r)+s0 ",

so that   

G(m, r) ( g(m-1, r) + s0,    and
(4)
n0(m, r) = n*(m, r) + [g(m-1, r) + s0 ]((m-1)r  + max { Z(m-1, r) }.
PROOF. Let us fix arbitrary m (1 and r (2 and assume that the value of
g(m-1, r) is known. Then, by the definition of g-function, any natural number
n > g(m-1, r)((m-1)r + max {Z(m-1, r)}
Can be represented by the sum
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Assume, further, that there exists a natural number n*(m, r), with the property Q. Then any natural number
n > 
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(m, r) = n*(m, r) + g(m-1, r)((m-1) r + max {Z(m-1, r)},
can be represented by the sum n = n*(m, r) + n1, where
n1 > g(m-1, r)((m-1) r + max {Z(m-1, r)};
and, therefore, can be represented by the sum (5). Then,
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 (6)

Assume that

l = g(m-1, r) + s0  - k.
(7)

 The last equality is admissible, because (7) and the obvious condition
1  (  k  (  g(m-1, r)
imply that
s0 (  l  (  g(m-1, r) + s0 -  1  < s1 .

 Then, in the sums (6), we have
l+k = {g(m-1, r) + s0 - k } + k = g(m-1, r) + s0 , 
and
{g(m-1, r) - k - [g(m-1, r) + s0 - k] } = - s0 ;
therefore, any natural number n> 
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or
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Putting 
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we find that any natural number n> n0(m, r) can be represented by the sum
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i.e., (4): 

G(m, r) (  g(m-1, r) + s0.
 (4)

 This concludes the proof. (
REMARK 1. It is easy to see, that, by virtue of the Fermate theorem, in the condition (3),  s0 ( 2 for all r ( 3. Moreover, in [6], the following nontrivial statement was formulated for the first time:
HYPOTHESIS OF NECHAEV. For any m ( 1, r ( 2 there exists an infinite set of natural numbers n*(m, r) that are representable by sums (i) simultaneously for all s, k ( s ( g(m,r), where k=1 for r=2 and k=2  for all r ( 3 , by virtue of the Fermate theorem.
If the Nechaev Hypothesis is valid (even in its weaker form: “ there is even one unique number n*(m,r) ”), then the inequality (7) can be re-written for a common case r ( 3 in the form:

G(m,r)  (  g(m-1,r) + 2.
(8)


 So, the Theorem 2 has the form of the implication 
( n*(m,r) Q(n*(m,r)) ( ( n > n0(m,r) P(n),

that allows us, really, to use the method of superinduction. 

 Now, to obtain an upper bound for G(m, r) for any concrete values m (1, r (2, it is sufficient to know the exact value of g(m-1,r) and to find a number n*(m,r), possessing the given property Q. It is necessary to underline, that Theorem 2 does not guarantee an existence of the number n*(m,r), but if such the number was found, Theorem 2 states the reliable truth of the consequent of the implication (2).

 And further, - for obtaining the exact value of g(m,r), - it is necessary to look through the pythograms [2] of the sets,

N(m,r,s),   s  =  g(m-1,r)+s0,  g(m-1,r)+s0 +1,  g(m-1,r)+s0 +2,  ... ,

on the segment,  [s(mr +1, n*(m,r) ], until the equality 
| N (m, r, s) | = | Z (m, r) |
will be attained.

 Remark, the attainability of such the equality is guaranteed by Theorem 1.

 With the help of the CCG-system DSNT - the Dialogue System for CCG-investigations in the additive Number Theory [2] - we have found the least values of the unique numbers n*(1,r), r = 2, 3, 4 (see. Tab. 1, column 2) [6]. By virtue of Theorem 2, it is enough in order to prove (with the help of the method of superinduction) the generalizations of the classical (m=0) outstanding results for sums of squares (Lagrange [4]), cubes (A.Wieferich [4]) and biquadrates (R.Balasubramanian, J.Deshouillers and F.Dress [8]) of non-negative integers for the non-classical case m=1.
Table 1. Minimal unique integers, n*(1,r), and estimations for the functions G(1,r) и g(1,r) by 
r = 2, 3, 4.

R
min n*(1,r)
s0
s1
g(0,r)
G(1,r)
g(1,r)

2
169
1
155
4
=5
6

3
1072
2
923
9
(11
14

4
77 900 162
2
77 897 521
19
(21
21


Consider, for example, the simplest case, m=1, r=2 in more detail.

 As is known, as far back as 1933 American mathematician G.Pall made a first step in the direction of GWP and proved the following statement [9].

G.Pall's THEOREM. g(1,2) = 6, i.e. for m=1, r=2 and (s(6, any natural number n ( 1 is representable as a sum (1), EXCEPT for the trivially unrepresentable numbers, 1, 2,..., s-1, and the numbers of the special form, s + z, where z ( Z(1,2) = {1,2,4,5,7,10,13}.
[image: image11.png]Fig. 1. Visual Proof of G.Pall’s Theorem: g(1,2)=6. Here, the little asterisc in 21th raw marks the unique number, n*(1,2)=169, which, in this case, is the same as the threshold number, n0(1,2), and every s-th pythogram is started with the natural number s+1. 


Proof of G.Pall’s Theorem by means of traditional deductive methods of classical number theory takes about 6 pages of the close text [9,10]. By means of the superinduction method this theorem is proved as follows. In the considered case, the Theorem 2 states: IF there is a natural number, n*(1,2), which is representable by sums of s squares of positive integers (m=1) simultaneously, for example, by s= 1,2,3,4,5 (in that case s0 =1, s1 =5 and, therefore,  s1 - s0= 4 = g(0,2)), THEN any n > n*(1,2) will be representable by a sum (1) for any s ( g(0,2) + s0 = 4 + 1=5. As is known [10], the least such number is n*(1,2) = 169. In fact, all natural numbers n> 169 are white in the pythograms with s ( 5 (see Fig. 1), i.e. all these numbers are representable by sums (1), but the “Yes/No” property of all numbers n (169 we see immediately.
I shall remind, that all these pythograms are read (more precisely, are accounted) from left to right, and from top to bottom, at that black small squares correspond to natural numbers which are not representable by sums (1), and white small squares correspond to natural numbers which are representable by sums (1) (naturally, by the same values of the parameters: m=1, r=2).

 In particular, we see, that only seven numbers 6 + {1,2,4,5,7,10,13}are black in the pythogram with s=6. This VISUAL fact proves the G.Pall Theorem for the case s=6. The passage to a common case of any s ( 6 is based on the earlier proved Lemma [2]: if the equality | N (m, r, s *) | = | Z (m, r) | is fulfilled for some s*, then the equality is held for all s ( s *.

In Tables 2 and 3, exact estimations of the function g(m, r) for sums of squares and cubes by various m, are given. All these estimations were obtained by means of the superinduction method, Theorem 2, and CCG-System DSNT.
Table 2. Generalized Waring’s Problem  for sums of squares by varios m.

m
0
1
2
3
4
5
6
7
8
9
10

n*(m,2)

169
143
117
247
273
375
493
480
377
703

s0

1
1
1
1
1
1
1
1
1
1

s1

=155 155
>  20
> 11
> 20
> 18
> 23
> 26
> 21
> 14
> 26

g(m,2)
4
6
8
8
8
8
10
 9
11
12
10

Table 3. Exact values of the function g(m,r) of GWP for sums of cubes by m=1(10.
m
0
1
2
3
4
5
6
7
8
9
10

g(m,3)
9
14
16
20
26
32
24
26
29
25
28

As it’s easy to see, the function g(m,r) already is not monotonic by m. I doubt that there is the same simple estimation for g(m, r) that exists for the classical function g(0,r). I mean the well-known exact estimation of Dickson L.E. and Pillai S.S. [4], obtained by means of the method of trigonometrical sums by Vinogradov [4].

 The present work is maintained by RFBS (grant 95-01-01600) and RHSF (grant 96-03-04165) foundations. The author expresses the gratitude to Anton Zenkin for the help by developing the CCG-system DSNT and by creating cognitive CCG-images of number-theoretic objects presented in Fig. 1. 
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