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Abstract


One of the crucial problems in machine vision is reconstruction of 3D shape of objects from their images and the most complicated aspect of this problem is disparity estimation. Some techniques of disparity calculation in realtime monocular and binocular environment are presented. The algorithms have been developed on the basis of correlation method estimating corresponding points on images in stereo set. Performance optimization is achieved by some modifications of correlation method including a pyramidal presentation of the images, by introducing some constraints on the conditions of image recording, and by involving an a priory information about objects in study. The method for estimating the size and shape of correlation region is proposed. The system was tested on a database of stereo-images. 
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introduction


Rapid evolution of computer vision systems makes it actual to develop effective methods of surface characteristics recovery from images for real-time applications. Here a method for reconstructing a 3D-surface of an object observed by computer vision system from its images is presented. This method is developed for application in person recognition system [2] jointly with modification of principal component analysis, which is described in [3]. The most general simple algorithm for reconstruction of the surface from its images is used. This algorithm was optimized under particular constraints of recovering complicated surface from low-contrast images. The first section presents some background overview of the problem and certain restrictions of methods. The second section describes the general approach to the solution of stereo-reconstruction problem in binocular systems by correlation method. Next section presents optimization efforts in taking advantage of specificity of a problem. The final section offers the example of practical usage of the method and results obtained.


There are various stereo surface reconstruction algorithms for different applications that are reviewed in [5][6]. Applicability of any of these methods at any particular case depends substantially on equipment used and scene geometry, computing resources and other factors. Thus in spite of great number of works published in this field only few of them are applicable to reconstructing complicated surface from their low-contrast images. Stereo-reconstruction methods may be classified firstly by number of source images used (i.e. points in space-time from which the registration is performed). Firstly, methods can be divided to monocular [7], binocular [8][9][10] and multi-ocular [11]. Secondly, they can be classified by approach to reconstructing surface to those defining surface local slopes using brightness modulation, those using texture and combined ones. The algorithm presented is binocular and performs reconstruction basing on texture.


The problem of stereo-reconstruction by texture in binocular system was formulated and treated from physiological point of view by Marr who modeled human vision. Basing on this Grimson [13] built a computing system and showed the efficiency of this model. Marr and Poggio developed the model further by offering a principle of pyramidal data representation and treatment [4]. Pascal Fua applied stereo-reconstruction methods to images of human face [12].


basic concepts


For reconstructing 3-D surface the series of successive images of a moving object is used. The series of images is divided into a set of pairs. Each pair of images is treated as a virtual stereopair and is processed with correlation algorithm to calculate disparity maps [1]. The basic concepts of the correlation algorithm and its peculiarities connected with object motion are discussed here. 


The problem is: reconstruct the 3D-shape of some object given two images of this object that are obtained from different points of view. Now some definitions and notions of presented framework will be introduced. Let us call left image as L-image, right image as R-image and their aggregate as stereo-pair. The points on L- and R- images representing the same point of a body surface are called corresponding points. Having imposed some frame of reference on these images, one can say that disparity at a point of left image is the measure of distance between this point and corresponding one on right image. Generally, one may write:


�EMBED Equation.3���


where DX and DY are projections of disparity in point (x, y) of right image on OX and OY axis, L(x, y) and R(x, y) are left and right images and N(x, y) is a function that includes noise and changes in image that originate from variations of light and shading conditions. It is likely, that an analytic solution of this equation cannot be found. Thus to calculate disparity one can use several numerical methods. 


It is easy to see that being given a geometry of system (i.e. orientation and distance between cameras) one can use coordinates of correspondent points to restore the position of original point in 3D-space.


In order to obtain good relief estimation with no gaps or inaccurately reconstructed areas one might use dense map of correspondent points (also referred to as disparity map). So, the question is how to find correspondent points for as many points of images as it is possible. The first thing one can think about is to treat sequentially all points of, say, left image finding their correspondents on right image. This is correct but highly time-consuming manner. A number of optimized techniques presented in the next section were elaborated. Let us consider the question how to find a correspondent point to a given one. Let us call an image, for point of which (x, y) a correspondent is searched as basis image, and an image, on which the correspondent point is searched as scanned image. Some region in the scanned image, where correspondent point can be probably found will be called scanned region. Some small neighborhood of a point will be called correlating region. Correlating region is built (in basis image) and after it the most resembling one is sought in the scanned region of the scanned image. Measure of distance between regions’ centers on basis image and those on scanned image is considered to be a disparity on this point. 
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Now the question is how do one measure the resemblance of regions i.e. what is a correlation function. The well-known form of correlation function is 
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But it is applicable to some stochastic models, while the nature of our problem is different. It is hard to derive theoretically the suitable form of correlation function. So several other forms of correlation functions were tested, for example:


�EMBED Equation.3���	(1)
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and found that the first of these yields the best results. One can notice, that canonical correlation function increases with the increase of similarity while others presented behave in an opposite way. But still they measure the similarity, if properly normalized. The question of normalization will be studied further. Now the correspondent point can be estimated as:


�EMBED Equation.3���


where �EMBED Equation.3��� is normalized correlation function.


Since the algorithm bases on comparison of regions of images it is reasonable to make some signal pre-processing to facilitate this comparison and make it more reliable. The algorithm bases on texture so it’s easy to conclude that the best pre-processing would emphasize texture details. Methods employed for extracting local features of images including texture are based on local window operations. For the purpose of this work an approach based on local equalization was chosen. It is known that equalization results in strengthening such space variations of signal that have typical scale size of nearly same magnitude as those of equalization window. In other words the equalization process selects in the best way details that have nearly same size as equalization window. Thus, selecting the size of equalization window one can achieve a distinct emphasizing of cardinal details of image. Large-scale variations emergent due to irradiance trend along image frame are suppressed. 


optimisation techniques.


In the case of motion a movement of an object is quite arbitrary. It makes the algorithm described above computationally inefficient. The computational complexity of this case is determined by several factors.


1. In order to process N images we should run correlation algorithm for approximately N stereo pairs.


2. Disparity can lie in both X and Y direction; so instead of rectangle stretched in X direction the scanned region should be a square of the same size.


3. The initial values of disparities in X and Y directions are unknown.


4. The dispersion of disparity on the image can be small or large depending on the type of a movement of an object. For example, in the case of parallel transfer the dispersion is quite small, whereas in the case of rotation around OZ axis the dispersion is much higher. Thus, the question of choosing the best size of scanned region optimal from the points of views of calculation time and required accuracy arises.


In order to overcome these difficulties several optimization techniques were proposed.


The second subject to concentrate at is the properties of object registered. The surface of object is sufficiently smooth and thus it becomes possible to use different smoothing filters and interpolations without considerable decrease of precision. The image of object can have regions with well-marked texture as well as with feebly marked texture and even texture-less regions. That is why from the point of precision it would be optimal to choose combined algorithm, which uses texture and correlation approach in the regions with well-marked texture and shading in the regions with feebly-marked texture. But those variants of such algorithms available today are rather time-consuming and do not satisfy time constraints for real-time recognition systems. Oscillations in relief are little if compared to a distance from object to camera


This system specific conditions (geometry of apparatus and object properties) result in the following modifications of algorithm that can be divided into three classes, that are modifications of regions the algorithm works with, modifications of applicable correlation functions and modifications in the structure of algorithm in whole. 


Now we shall enumerate the problems that led to algorithm restructuring. For a given system geometry the disparity variations are not more than several pixels. It is a very coarse scale for performing subsequent calculations and deciding about recognition. This problem is put away by introduction of super-resolution. In some points due to noise or absence of texture or too regular texture the algorithm can fail and a wrong disparity value can be outputted. To sift out this fails the reverse pass of correlation algorithm is used. One of substantial limitations is the run-time of algorithm. In order to decrease the run-time the pyramidal data representation and workflow are used.


Pyramidal representation


As it was already mentioned the system involved was designed to work in real-time mode. Let us consider some optimization steps that can be performed in the framework of the algorithm discussed. If the number of points in which the correlation search of correspondents is performed is denoted as N, number of point in scanning region as S and square of correlation region as L an estimation will give us the following calculation complexity:


�EMBED Equation.3���	(2)


where n is number of elementary operations. So the problem of diminishing the calculation complexity can be set as a problem of decreasing any of these numbers without affecting precision of surface reconstruction. There is one simple and effective way of doing it. The mesh of points, where the correlation search of correspondents is performed is thinned in N times, so the number of these points is N2 times less. (One should notice that such calculation is not equal to calculation upon an image lessened in N times for such image transformation removes information about thin image texture). Then the values of disparity in other points are interpolated. Linear interpolation by nearest neighbors is feasible at moderate thinning (N<4). At greater thinning interpolation is made through constructing of smooth surface, containing known points of thinned mesh. However this approach is not used since at great thinning the precision is lost at points that are not in the mesh while at low thinning the problem is rather time-consuming. One of the ways of removing this contradiction is pyramidal structure of data and processing. The trick is to split the processing into two or more similar steps (or layers). Characteristics relating to large fragments of images are calculated earlier on higher levels of pyramid and each lower level involves characteristics of smaller image fragments using the information obtained at higher levels. The system described employs two-level pyramid. Rough disparity that is calculated at high level is mainly used to lessen the scanning region at low level correlation search. Also the size of correlation region is decreased at low level. Let us  consider each of two levels in more details.


High level. The mesh of points where the correlation search of correspondents is performed is substantially thinned. Since the results of this calculation are used in the following steps, a wrong value at one point of mesh can affect many points of resulting disparity. That is why both calculation and check (i.e. reverse pass) are performed thoroughly that means large correlation regions and large scanning areas are used. If a value in a point fails the reliability check the disparity is calculated in one of nearest points of image. This value of course can slightly differ from that of required but such small differences are treated at low levels of the algorithm. If none of nearest points gave reliable values of disparity all points in the neighborhood up to other points of mesh are marked as unreliable. The lower level will not use the information of high level at these points (i.e. the lower level will work as thoroughly as high one does). The substantial complexity of calculations at each point at high level does not significantly influence the total calculation cost since the number of points in thinned mesh is low. After calculation of disparity in the points of mesh all other points’ disparity is interpolated by a smooth surface. Here the assumption is used that the surface of object is smooth enough so the interpolation surface is a good approximation of it by Chebyshov’s norm (i.e. there are no points in which real and interpolated disparity strongly differ).


Low level. Disparity is calculated on a slightly thinned mesh with exception of points that were treated on high level. Since some approximate value of disparity is already present at any point as a result of high level effort the region where the corresponding point is located (scanning region) can be determined more accurately. In other words it can be made smaller (nearly 6-8 times for the system discussed). Since the scanning region is diminished, the number of regions locally resembling the correlation region decreases as well, so no false correspondent may appear. Therefore the correlation region can be lessened too. In some cases (if high correlation is obtained) the check via reverse pass can be omitted. So then, with the help of information from high level all three multipliers in (2) are decreased. As a result the execution time of pyramidal algorithm is near 20 times less than that of unmodified algorithm while the precision of reconstruction remains the same.


Checking disparities.


Let us now concentrate on possible mistakes of correlation algorithm. If a studied surface has a highly regular structure several regions can be found in a scanning image that resemble a certain region in a basis image. In this case correlation function has several local maxima in a scanned region, and it may happen, that ‘correct’ maximum is not a global one. So, a wrong match can be selected for a point and wrong disparity can appear. The other case, when correlation algorithm can generate an error is the absence of good texture. In this case correlation function has no maximum, any point in scanned region can be corresponding and disparity can receive any value. To suppress errors in the case of texture absence a simple but still rather effective technique is used. Some threshold is imposed on correlation function in such a way that if it’s value does not exceed the threshold the regions are considered to be completely different and are excluded from further treatment. It is much more difficult to eliminate errors in the case of highly regular structure. To reveal such errors a reverse pass of correlation algorithm is introduced. Suppose for a given point (XL,YL) in L-image the correlation algorithm has found a possible corresponding point (XR,YR) in R-image. After this to ensure the perfect correspondence the reverse pass technique is applied that is: just the same correlation algorithm is run, but treating R-image as a basis and L-image as a scanned image. If this procedure finds that correspondent for (XR,YR) is the initial point (XL,YL), the correspondence is considered perfect. Otherwise the point (XL,YL) is marked as having unrecognized disparity that is taken into account during following steps of algorithm.


The transformation D(D’ mapping the points of the left image to the points of the right image and the inverse transformation D’(D are smooth enough. This makes possible using the following simple algorithm for checking found disparities. The disparity (dx0, dy0) of the point (x0, y0) is considered to have been found incorrectly and eliminated from further consideration if the disparity do not satisfy one of the two median filters – for direct and for inverse transformations:


1. �EMBED Equation.3���


where (<dx>, <dy>) is the average disparity of points adjacent to (x0, y0) (except (x0, y0)) or


2. �EMBED Equation.3���


where (<dxrev>, <dyrev>) is the average disparity of points which was projected to the point adjacent to (x0’, y0’) (except (x0, y0)).


This simple technique allows to correct errors of the correlation algorithm practically without computational expenses.


Determining the size of the scanned region.


As indicated above the dispersion of disparity on the image can change greatly from one stereo pair to another. That is why the size of scanned region that will provide the same accuracy can range in some diapason. Thus the problem of determining this diapason arises.


The proposed method is the following. First some small initial scanned region P0 is set. Then the correlation algorithm is run for some number of points large enough to carry out statistical analysis. After that by analyzing the histogram h(Pi,dx,dy) it is determined whether the scanned region was set correctly or it should be enlarged. In the latter case new scanned region Pi+1 is calculated and the previous step is repeated. To make the algorithm computationally efficient all calculated values of a correlation function may be preserved and used in successive steps.


Experiments show that the histogram for the large scanned region covering the correct values of disparities is usually a well-clustered two-dimensional area Pmax. The figure [1] illustrates a typical 2D histogram for approximately 600 points. 
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Figure 1 2D disparity histogram


To find the area Pma the following algorithm consisting of two steps is proposed.


Step 1. On this stage there is no information at all about the location of Pmax. The algorithm starts with the small scanned region of square form with the center at (0, 0) and successively increases the size of the scanned square. If the scanned region does not cover Pmax then percent of point for which the disparity is found is small and these points are randomly located on the scanned region; when the scanned region starts covering Pmax percent increases and found points begin to cluster. Let us denote the total number of points as nall , the number of points for which disparity was found as nfound, and the number of points in the largest connected set of points as nconn. We use the following empiric criterion:


if nfound>nall/2 and nconn>nfound/2 then we proceed to the next stage


if nfound>nall/2 but nconn(nfound/2 then nall may be too small for disparities to form the connected set; in that case we increase nall


if nfound(nall/2 we increase the size of the scanned region.


The typical number of points involved in this step is about 50.


Step 2. The aim of this step is to calculate disparities on the thinned grid; these values will be used for the next stage of the pyramidal algorithm. We start with the scanned region found on the previous step. The procedure for choosing the new scanned region Pi+1 is the following:


�EMBED Equation.3���


 the point (dx0, dy0) will be added to Pi+1 if the number of points in its D-neighborhood exceeds some fraction from the total number of points n:


When Pi+1=Pi we proceed to the following stage.


Algorithm for calculation of correlation function.


�Let us suppose that correlation function is calculated for a large number of points �EMBED Equation.3���of an image on the scanned region P of the same shape and size for all points. The following correlation function will be used:�EMBED Equation.3���


where W is a correlating region with a center at the point (x0, y0), for which we are seeking the disparity, f(x,y) and g(x,y) represent brightness in points of base and scanned regions respectively, and 


�EMBED Equation.3���


Generalizing calculation of correlation function from region W to an arbitrary region D:


�EMBED Equation.3���


(Then (3(x0, y0, dx, dy)=s(W, dx, dy).)


W is assumed being rectangular xcorr x ycorr.


Two different methods allowing calculating the correlating function for points on the different grids may be used.


Method 1.


Let us divide a left image on Nw non-overlapping small regions wi of size (xwcorr,ywcorr); for each region calculate the sum
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If it is possible to present the region W as a union of wi then we can calculate the correlation function as follows:


�EMBED Equation.3���


To estimate the time of working of this algorithm as compared to the standard one let us calculates the number of elementary operations such as summing and subtraction. The standard algorithm involves n0=Nxcorryxorrnscan such operations, where N is the number of points, (xcorr, ycorr) are the sizes of correlating region and nscan is the number of points in P.


The optimized algorithm consists of two steps. The number of operations in the first one (calculating s(wi, dx, dy)) is n1=Nwxwcorrywcorrnscan , and the number of operations in the second one (calculating (3(x, y, dx, dy)) is n2=Nnwnscan, where nw is the number of regions wi in W. Thus, the whole algorithm takes n = (Nwxwcorrywcorr + Nnw)nscan operations. The ratio of two numbers is


�EMBED Equation.3���.


In the standard algorithm the correlating region of size 11x11 was used. Below are two examples of realization of an optimized algorithm in which the correlating region most closely approximate the square 11x11.


wi are squares 4x4, correlating region is the square 12x12, points are sought on the grid thinned in 4 times. nw = 9, N = N0/42, Nw = N0/42, so �EMBED Equation.3���


wi are squares 3x3, correlating region has the size 9x9, 9x12, 12x9 or 12x12, points are sought on the grid thinned in 1.5 times. nw = 9, 12, 12 or 16 accordingly, N = N0/1.52, Nw = N0/32, so
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Thus, in the first case the increase in speed is in 4.8 times and in the second in 8.3 times.


Method 2.


Denote W(x, y) the square of size (2(+1)x(2(+1) and w(x, y) the rectangular 1x(2(+1) with centers at (x, y):


�EMBED Equation.3����EMBED Equation.3���


We can write
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�EMBED Equation.3���	(2)
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�EMBED Equation.3���	(3)
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Thus, the following algorithm can be used to calculate the values of correlation function for points of a rectangular xmin(x(xmax, ymin(y(ymax with a correlation region (2(+1)x(2(+1) and with a scanned region P:


( Calculate s(w(x, y), dx, dy) for the left border of a rectangular xmin(x(xmax, y=ymin and for all (dx, dy) from P


( Calculate s(w(x, y), dx, dy) for all points of a rectangular xmin(x(xmax, ymin(y(ymax using (2)


( Calculate s(W(x, y), dx, dy) for the upper border of a rectangular x=xmin, ymin(y(ymax


( Calculate (3(x, y, dx, dy) = s(W(x, y), dx, dy) for all points of a rectangular xmin(x(xmax, ymin(y(ymax using (3)


Assuming xmax -xmin>>D, ymax -ymin>>D we can neglect the time of computation of the first and third steps. The second and the fourth steps require N uses of (2) and (3) accordingly, each formula uses 3 elementary operations. Thus the number of elementary operations can be estimated as n = 3Nnscan. The increase in time is


�EMBED Equation.3���


for a correlation region of 11x11.


Modifications for the algorithm for calculation of correlation function.


The second example from the method 1 and the method 2 are used in the low level of the pyramidal algorithm since they deal with a very dense mesh. Therefore the scanned regions for different points can differ since they depend on disparities found in the high level. That is why some modifications of these algorithms are required.


Modifications for the method 1.


For the calculation of (3(x0, y0, dx, dy) we should know s(wi, dx, dy) for wi belonging to W. If s(wi, dx, dy) was not calculated before then calculate it; if it was already calculated just use the value.


Modifications for the method 2.


For the calculation of s(w(x, y), dx, dy) use the following algorithm:


if s(w(x-1, y), dx, dy) is calculated then use (2);


if not use the direct summing.


Analogously for the calculation of s(W(x, y), dx, dy) use same algorithm:


if s(W(x, y-1), dx, dy) is calculated then use (3);


if not use the direct summing of s(w(x, y), dx, dy) whose values is calculated using the previous algorithm.


The property of these modifications is that if used with the same scanned region for all points they involve the same number of calculation of auxiliary values (s(wi, dx, dy) for the method 1 and s(w(x, y), dx, dy) for the method 2) as the original algorithms. However these modifications require additional overhead charges and thus run slower. The possible solution may be to run the original algorithm for the scanned region P’ before applying the modified algorithm where
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and b is determined experimentally.


Finding the minimum of correlation function.


To determine the disparity we should find the minimum of the correlation function on the scanned region P. The task is complicated by the fact that the function often has several local minima on P so most methods for finding the minimum of a function do not work. We used the following method allowing decreasing the number of calculating of the correlation function in up to four times as compared to calculating of the correlation function for all points of P.


( Set �EMBED Equation.3���


- points of P lying on the grid thinned in two times


( (() Calculate the correlation function for points of Pi


( Find the minimum of correlation function (3min among calculated values


( Set �EMBED Equation.3���


�EMBED Equation.3���( If Pi+1 ( Pi then go back to (()


The value of D(3 is determined experimentally from the condition that the number of points for which the minimum is found incorrectly be less than some small value say less than 1% from the total number of points. In our system we used D(3=10 with a range of the intensity from 0 to 255.


This algorithm can be modified in such a way that for a certain number of points it will find disparity even if it does not lie in the scanned region practically without additional computational expenses. For that reason replace the rule for choosing Pi+1 with the following rule:
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�EMBED Equation.3���where
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Super-resolution is used to increase the granularity of scale by employing information from neighboring points. Simple and thus fast method of increasing resolution is used. Suppose the correlation function values were calculated in some scanning region. The maximum of correlation is then found. If it lies on a bounding of region the co-ordinate of it is considered to be a sought disparity. Otherwise, maximum and nearest neighbors are interpolated by a convex surface (for example parabolic). The disparities then are calculated as coordinates of surface crest. It is easy to see that number of disparity gradations obtained by such method strongly exceeds the number of source points.


results and conclusion


The presented techniques were implemented in the framework of face recognition system [1] and were tested on a database of human faces. Figure 2 illustrates the source images. The white pixels on the figure represent some of correspondences found on images. Figure 3 displays disparity maps, calculated by the algorithm. The typical working time is 2-3 seconds on Pentium-II/300 processor. 


�EMBED Word.Picture.8���Figure 2 Source images


�EMBED Word.Picture.8���Figure 3 X- and Y-disparity maps


The testing of described algorithms have shown that the precision of reconstruction is the same as in the stereoscopic system, while the time of execution slightly increases. The current algorithm is not very robust and should be improved to increase its reliability. However it can be successfully used in various applications of monocular computer vision systems for reconstructing the 3D shape of object in a close to real time scale. 
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