
Self-Organization of Trade Networks in an Economy with

Imperfect Infrastructure

Sergei Guriev, Igor Pospelov and Margarita Shakhova
Computing Center of Russian Academy of Science �

May 31, 1996

Abstract

A multi-agent model is proposed for analysis of self-organization of trade networks.
The model takes into account time spent on transactions ("trade distance"). It is
shown that the same set of traders may generate trade networks of di�erent structures
depending on average trade distance. When the latter is small, the market is near-
competitive. When trade distance is large, the set of traders exhibits monopolistic
behavior. Under medium trade distance a phase transition and complex dynamics
are observed, including signi�cant price oscillations, regular bursts of shortages and
long chains of traders. Emergence of trader's market strategies such as stabilizing
wholesale traders and destabilizing speculators is discovered. The model is studied
both analytically and via computer simulations.

1 Introduction

The problem of self-organization of trade structures is of a special interest for Russian
economy. It is known that the trade sector plays a special part in an economy during tran-
sition to market economy. The trade sector adsorbs both signi�cant capital investments
and skilled human resources. Some economists believe that the accelerated development
of the trade sector is favorable for the economy while some others argue that the trade is
growing at the expense of producers distracting the economy's resources. Anyway, both
acknowledge that the intermediaries are outdoing the rest in a decentralized transition
economy. Probably, due to high transaction costs, poor infrastructure and high uncer-
tainty, the trade pro�ts are very high, and this attracts new resources and brings about
further development of the trade sector. Note that unlike other transition economies, in
Russian economy the private trade sector is being built from the scratch in the absence of
developed trade infrastructure.

There is some literature on functioning and self-organization of trade networks. First,
these are works [1]-[4] which examine decentralized trade systems when unlike Walrasian
auction a number of local markets with di�erent prices are assumed to exist. In spatial
equilibrium models and other network equilibrium models [1],[2] the existence and proper-
ties of equilibrium are studied under di�erent assumptions. Also, [1] suggests algorithms to
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compute network equilibria. [3],[4] consider price formation in pair-wise meetings of buy-
ers and sellers with sequential bargaining. The convergence of such process to Walrasian
equilibrium is studied.

Second, in several works the agglomeration of trade middlemen has been considered. In
[5] buyers and sellers change their location in order to maximize their objective functions.
If the gain of mutual proximity is greater than the transportation costs, the agents form
a market place. In [6] a population of several classes is considered and creation of local
markets is studied. The formation of a local market in a given class incurs costs but
without the local market the agents have to go to other classes' markets which is also
unpro�table. There is shown that if transaction costs are low enough, there exist stable
trade structures. And if the richest class' wealth far exceeds the others' then this class
forms a monopolistic market. So [6] studies endogenous formation of trade networks, but
it examines only �nal state of the system - ESS [7], like in network equilibrium models.

In the present work we apply a di�erent methodology that allows to study both static
and dynamical properties in the system. This approach referred to as emergent computa-

tions is currently widely used in economics, ecology, sociology etc. According to [8] and
[9] the essence of this method is that information which is absent at lower levels can exist
at the level of collective activities. Emergent computation approach can be applied to
the collection of interacting agents, each following explicit instructions, also called "local
programs", "micro-structure" and "component subsystems". The approach assumes that
there is no central authority to control the system, the agents are able to adapt and learn,
the global cooperation emerges from local interactions.

Interactions among the agents at a micro level bring about implicit global phenomena
at the macroscopic level i.e. epiphenomena, for example, organization of stable structures
in trade networks or existence of stable cycles in the dynamical behavior of the system.
Therefore, the object of study is a nonlinear dynamical system which may evolve to stable
cycles, strange attractors, chaotic behavior etc. as well as to a stable equilibrium. For
systems which are complex enough it is often impossible to study all the dynamics arising
analytically and computational experiments are used. This approach has proved to be
e�ective in very many �elds including modelling asset bubbles [10] and dynamical aspect
of cooperative behavior [11]. In [12] it is applied to study a multi-sector and multi-stage
production process with local interactions between productive units using non-convex
technology. It has been proved that many small independent shocks to di�erent sectors
do not cancel in aggregate due to signi�cantly non-linear interactions between units.

In [13] dynamics of a trade network is studied. The well-known evolutionary game ap-
proach is combined with endogenous partner selection. The optimal strategies for players
are evolved over time via a genetic algorithm, so agents are able to learn dynamically. Note
that the [13] and the present work are similar in terms of object and methodology of study,
but [13] is more focused on di�erences between adaptation and learning mechanisms in a
iterated prisoner's dilemma, while in the present work this approach is applied to study
processes in trade networks in an economy with imperfect infrastructure and possibility
of shortages.

In Section 2 we introduce the general setting and models of behavior of individual
agents, in Section 3 results of analytical study and simulations are discussed. Section 4
contains some concluding remarks and directions of further studies.
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2 The model

2.1 General setting

We consider interaction of economic agents of three types: consumers, producers and
traders in a distributed market of homogeneous good. Each type is described by a set of
parameters and rules of behavior in the market.

Denote sets of consumers, producers and traders by C, P and T , correspondingly.
Assume that P and T are �nite. Producers are pure sellers and their behavior is exogenous
to the system. Consumers are pure buyers. Traders can either buy or sell. Buyers are
indexed by i 2 C [ T , and sellers | by j 2 P [ T . Buyers can buy only one unit of
good per transaction. For every pair (i; j) from C [ T � P [ T a nonnegative number
rij is de�ned, which we will refer to as trade distance.1 The trade distance is average
time that buyer i has to spend to buy a unit of good from seller j. In an economy with
developed infrastructure the time spent on purchasing is small and usually is not taken
into account. However, in an economy with imperfect infrastructure such as contemporary
Russian economy, the time for gathering current information about the seller, reaching the
seller and physically transporting the good is signi�cant, which, as shown below, may be
crucial for macroscopic dynamical properties of trade networks.

Generally speaking, time spent on transaction is a realization of Poisson stochastic
process with mean equal to trade distance; the processes are independent for di�erent
buyer-seller pair. However, simulations have proved that we may use mean 
ows of good
instead of stochastic ones.

Every buyer has buying preferences �ij i. e. if buyer i wants to buy a unit of good,
he will go to seller j with probability �ij . Naturally, we require �ij � 0,

P
j �ij = 1 and

�ii = 0, i 2 T .
Sellers are described by their selling prices pj and probabilities of availability of the

good �j . We assume that sellers do not distinguish buyers so that any buyer that comes
to seller j, buys a unit of good for pj with probability �j .

Producers are passive suppliers of good. Their prices pj and probabilities of absence
of shortage �j , j 2 P are constant parameters in the model.

In order to describe the process of trade we apply the framework of Bertrand compe-
tition:

� under given prices buyers decide from which sellers and how much to buy, so the
trade links are established;

� foreseeing buyers' response, sellers set prices in order to maximize their pro�ts.

In this framework, equilibrium prices are given by Nash equilibrium. The corresponding
game is de�ned in a normal form in Section 3.

Our model is a dynamical implementation of Bertrand competition with trade dis-
tances. Agents' behavior is described by fast and slow variables. Fast variables are set
by agent at every moment of time in order to maintain his material or �nancial balance
and may change discontinuously over time. Slow variables are continuously adjusted by
agent to current optimizers of his objective function. For buyers and sellers fast variables
determine how much to buy and how much to sell, correspondingly, and slow variables

1If we consider trade distances as an analogue of geographical distance, we should assume the triangle

inequality rij � rik + rkj and the axiom of symmetry rij = rji. Below we will not require these axioms

unless otherwise is speci�cally stated.
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determine from whom to buy (buying preferences) and at which price to sell, correspond-
ingly. We assume that fast variables (quantities) adjust immediately, buyers' slow variables
(buying preferences) adjust more slowly, sellers' slow variables (prices) change even more
slowly. So the whole setting may be referred to as Bertrand-Nash one: the sellers set
prices and observe buyers' response, change prices and observe response to new prices etc.
As sellers do not cooperate, their attempts to maximize pro�t by changing price represent
Nash-style tatonnement. Due to instantaneous adjustment of fast variables all required
balances are maintained at every moment of time.

Agents make decisions on the basis of information available to them. Every buyer
knows trade distances between all sellers and himself as well as prices and levels of shortage
for all sellers. Every seller knows demand for his good at recent moments of time.

Let us consider the behavior of individual consumers and traders.

2.2 Consumers

Consumer is described by a controllable Markovian process [18] with the following states:
w | work, c | consumption, j | purchasing from seller j, j 2 P [ T . While working
consumer receives wage si per unit of time. He leaves the state w with Poisson rate �i

which is consumer's fast control variable | if consumer wants to increase working time
he decreases the rate �i.

Consumer selects a seller (state j) according to his buying preferences, i.e. with prob-
ability �ij . The buying process is also a Poisson one with the rate 1=rij (so that average
time spent in this state is rij). When the trip is over consumer either buys a unit of good
at price pj with probability �j or buys nothing because of shortage with probability 1��j.
In the latter case he returns to the state w and resumes working, and in the former case
he enters the state c and begins to consume the purchased unit.

The consumption process is also a Poisson one with the rate 1=�i (i.e. average time
of consumption of a unit of good equals �i). Variables �i � 0, si > 0 are individual
characteristics of consumer.

We assume that consumer sets his fast variable �i in order to maintain �nancial bal-
ance. In [19] it is shown that expected 
ow of consumption in this case is:2

Ui =

P
�ij�jP

�ij(�j�i + �jpj=si + rij)
: (1)

In [19], we �nd ��ij that maximizes this functional over the simplex f~�i :
P

�ij = 1; �ij �
0g. It is shown there that in the generic case when pj=(si) + rij=�j are all di�erent for
di�erent j, the consumer will tend to select only one seller: ��i = ~ej� , where ~ej� is j�-th
unit coordinate vector (so that ��ij = 0 for j 6= j� and ��ij� = 1), and

j� = argmin
j

pj
si

+
rij
�j

: (2)

In the non-generic case, when there exist several such j�, we will assume that the consumer
shares his demand between these evenly ~��i =

P
J� ~ej�=jJ

�j.
The choice of j� may be visualized as follows (Fig.1a). In the plane (q; p) we locate

points (qij ; pj), where qij = rij=�j , j 2 P [ T . Then we construct a Pareto-optimal part
of the boundary of a convex hull L of the obtained set of points and draw a tangent line

2In this and further sections, the summation index is j if it is omitted: j 2 P [ T , j 6= i.
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Figure 1: Buyer's choice of seller. The left graph illustrates the case of consumer and trader
without shortage, tg� = si. The right one describes the case of trader with shortage.

to this part of the boundary with slope equal to si. The point of tangency will determine
j� (only in non-generic case here may be several points). One can see that if there is a
distribution of consumers in the same location (so that rij are the same) with di�erent
wages si, then this distribution will be split into several segments with one seller from L
serving consumers of one segment. Consumers with higher si will select seller with higher
pj and lower qij . If a seller decreases his price he widens his segment and increases his
demand.

As the set of consumers is in general discrete, the variations of the traders' demand
over time may be too large. In order to emulate continuity we consider the adaptation of
the buying preferences with some �nite rate rather than the instantaneous switching. In
this case the agent adjusts his buying preferences trying to attain the desired ones, with
the adjustment rate �i. So at every moment t current buying preferences �ij(t) may be
di�erent from the desired ones ��ij(t):

�ij(t+�) = �ij(t) + �i�(�
�
ij(t)� �ij(t)) : (3)

Here � is time step. We will assume � to be su�ciently small in comparison with 1=�i

so that �i� � 1. The value 1=(�i�) shows the number of steps required for the consumer
to adapt to the external changes.

For further study of traders' behavior we will also need a formula for average demand
of i-th consumer for j-th seller's good per unit of time:

�ij = �ij=
X

�ij(�j�i + �jpj=si + rij) : (4)

2.3 Traders

As the traders can both buy and sell we should de�ne two types of their behavior. First
we shall consider the determination of fast variables under given slow ones then that of
buying preferences and then that of the price.

Traders are also described by controllable Markovian processes. A trader can be either
in a free state i, or in one of the states j of buying from seller j (j 6= i). In the free state,
the trader can make a decision to buy a unit of good. In this case the trader leaves the
state i and enters one of the states j with probability �ij . The decision to leave the free
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state arrives with Poisson rate �i. The rate �i is the trader's fast variable which �nally
determines the 
ow of purchases.

As a seller, the trader receives the Poisson 
ow of buyers with the rate

�i =
X

k2C[T nfig

�ki ; (5)

so that his average demand is �i units of good per unit of time. With probability �i the
trader sells his good at the price pi to his buyers, and with probability 1 � �i he refuses
to sell. The trader may sell or refuse disregard to his current state. �i is also the trader's
fast variable and essentially determines the 
ow of sales.

Similar to consumer's, the process of buying is Poisson one with the rate 1=rij. When
the process is over, he either buys a unit of good at price pj with probability �j or buys
nothing with probability 1� �j . In both cases the trader returns into the free state i and
may go for the good again.

Unlike consumers who maintain the �nancial balance and maximize the in
ow of good,
traders tend to maintain the material balance (expected di�erence of sales and purchases is
equal to zero) and to maximize pro�t (expected �nancial surplus per unit of time). In [19]
we show that the condition of material balance is equivalent to the following relationship
between trader's fast variables �i and �i:

1=�i =
X

�ij(�j=(�i�i)� rij) : (6)

Note that 1=�i must be nonnegative.
As shown in [19] the trader's expected pro�t equals

�i = �i�i

 
pi �

P
�ij(�jpj)P
�ij�j

!
: (7)

To �nd the fast controls �rst we shall maximize the functional (7) choosing �i 2 [0; 1] that
satis�es the condition of non-negativity of (6).

We shall assume that the price pi is such that the pro�tability condition holds:

pi �
X

�ij�jpj=
X

�ij�j � 0 : (8)

Hence trader wants to increase �i as much as allowed by conditions �i � 1 and that of
non-negativity of (6). There can be three cases.

1. Shortage. The demand is too high

�i >

P
�ij�jP
�ijrij

:

In this case the trader can not serve all his demand and has to refuse to sell to some
of his buyers � < 1. The share of non-satis�ed demand is determined by the making
(6) equal to zero (i.e. trader spends zero time in the state i):

�i =
1

�i

P
�ij�jP
�ijrij

< 1 ; 1=�i = 0 :
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2. No shortage. The demand is su�ciently low

�i <

P
�ij�jP
�ijrij

;

so that the trader can satisfy it completely, �i = 1 and spends some time in the free
state i:

� = 1 ; 1=�i =
X

�ij(�j=�i � rij) > 0 :

3. Edge of shortage. The demand is exactly equal to maximum possible supply under
given slow variables:

�i =

P
�ij�jP
�ijrij

;

so that both
�i = 1 ; 1=�i = 0 :

Although this case may seem non-generic, we will show below that buying preferences
�ij adjust so that it is as generic as the �rst two cases.

Thus the fast variables are determined. Now we are also able to calculate the demand of
i-th trader for the good of the seller j per unit of time:

�ij = �ij minfqi�i; 1g=
X

�ijrij ; (9)

where
qi =

�X
�ijrij

�
=
�X

�ij�j

�
: (10)

Now we shall describe the adjustment of the buying preferences to the desired ones.
To �nd the latter the trader solves the problem of maximization of the functional

�i =

P
�ij(�j(pi � pj)� rij)

maxf
P

�ij�j=�i;
P

�ijrijg
(11)

by choosing �ij � 0,
P

�ij = 1.
This optimization problem is solved in [19]. The solution depends signi�cantly on

the magnitude of demand �i. If it is low enough then the trader satis�es all his demand
�i = 1 and chooses a seller that provides him with maximum pro�t per unit of good
j� = argmaxj pi � pj � rij=�j. Graphically the choice of optimal seller j� coincides with
consumer's choice at si ! 0: in Fig.1a one has to draw the tangent line to the Pareto-
optimal part of the boundary of the convex hull L with slope equal to zero. Hence trader
selects the seller with minimum selling price.

If trader's demand is too high then trader is bound to refuse to sell to some of his
buyers �i < 1 and chooses a seller that provides him with maximum pro�t per unit of
time j� = argmaxj(pi� pj)�j=rij . Now the trader's choice depends on his own price pi as
well: one should draw a tangent line to L that goes through the point (0; pi) (Fig.1b). The
more pi is the more pj and the less qij are. One can see that the trader's pro�t increases
with slope (pi � pj)=qij of the tangent line and therefore it increases with pi since L is
convex.

In the �rst case the trader will buy from a remote seller with the lowest selling price, in
the second case | from some closer seller with a higher price. The intermediate situation
is also possible in which the seller with the lowest price is too far away and buying only
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from him the trader would not be able to satisfy his demand, and vice versa the seller that
provides maximum pro�t per unit of time is too close and buying from him the trader
would be able to serve more buyers than he has. In this situation the trader diversi�es his
purchases and buys some amount from a remote seller at a lower price and the rest from a
closer seller at a higher price in order to satisfy his demand exactly: �i = 1 and 1=�i = 0.
In [19] it is shown that all three situations are generic.

Like those of consumer, current buying preferences of trader �ij(t) may be di�erent
from the desired ones ��ij(t). In this case the trader adjusts his preferences to the desired
ones with the adjustment rate �i according to the formula (3). Trader's adjustment rate
�i is also assumed to satisfy �i� � 1.

To achieve higher pro�t, the trader can also change his selling price pi. The price enters
the expression (11) for pro�t both directly and indirectly as pro�t depends upon demand
�i that, in turn, depends upon price according to (4), (5) and (9). If the trader knew all
internal parameters of his buyers and had unlimited computation capacities, he would be
able to calculate the dependence of �i(pi) exactly. However, a more realistic assumption
is that the trader's capabilities to obtain, store and process information are limited, and
in forecasting his demand function the trader uses only his observations of the demand
in the past. We assume that after every adjustment of price the trader keeps the price
constant for some time �i and observes what happens. He believes that average demand
per unit of time between two subsequent adjustments of price ��i(t) = ��1

i

R t+�i
t �i(�)d�

is function of his price pi(t) during this period of time [t; t+�i]. Hence, using historical
data on demand, the trader can estimate (locally) the derivative of demand by price

@�i

@pi
(t+�i) = Fi

�
pi(t); ��i(t); pi(t��i); ��i(t��i); :::

�
:

Here Fi is a function that gives forecast for demand sensitivity to price by past values of
demand and price. E.g. Fi = (pi(t)� pi(t��i))=(��i(t)� ��i(t��i)).

With current demand and sensitivity of demand given, the trader maximizes his pro�t
function �i(pi) (11) over the interval [(1� "i��i)pi(t), (1+ "i+�i)pi(t)]. If he has shortage
at this moment of time �i < 1, he increases price to (1 + "i+�i)pi(t), and if he has zero
demand, he decreases price to (1 � "i��i)pi(t). In addition, the trader may not sell the
good at a price below his marginal cost, so that his pro�t must be nonnegative and the
pro�tability condition (8) must hold.

We require that the relative change of price be bounded by �"i��i and "i+�i to provide
the continuity of price over time at su�ciently small �i ("i� and "i+ are internal parameters
of the i-th trader's). The matter is that trader's demand and therefore pro�t depend upon
not only his behavior but also upon other traders'. This is why if we allow to change the
price discontinuously in order to achieve the desired maximizer of pro�t instantaneously,
the system would have oscillations of high magnitude or, in generic case, chaotic behavior
caused by interrelationships and imperfect information of traders.

Also, to make the system more robust we let the moments for re-evaluation of price
be stochastic rather than deterministic. We assume that re-evaluation moments arrive ac-
cording to Poisson process with rate 1=�i (as in [20]). This removes arti�cial coordination
of traders' decision-making and eliminates the oscillations that are caused by speci�cs of
simulation methods rather than by the properties of the system itself.

Sellers' �i should be greater than buyers' 1=�j as in this case sellers really observe (at
least partially) the impact of their price adjustment. If �i are too small then sellers can
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not observe the actual demand function and therefore their price adjustments can only be
based on the rule of thumb.

3 Dynamics of trade networks

3.1 Equilibria and oscillations

We have de�ned the dynamical system, the current state in which is given by the set of
the slow variables for all agents: �ij ; pj. In this section we shall study the properties of the
whole trade network. First, we shall look for equilibria. We will consider the state of the
system to be an equilibrium if all buying preferences are optimal and all traders' prices are
local maximizers of their pro�t functions. The pro�t functions �i(pi) are obtained under
given other sellers' prices from (11) with demands (5), (4) and (9), and buying preferences.
Note that by de�nition, in equilibrium �i = 1 for all i 2 T , as if a trader has shortage,
his pro�t function �i(pi) is increasing. We need to exclude cases when traders have no
demand and are able to lower prices to attract some buyer. Therefore we'll de�ne pro�t
function �i(pi) = �1 if �i(pi) = 0.

Assume that distribution of consumers in space and by wages is such that every trader's
pro�t function is concave for all prices of other traders given. Then a state is an equilibrium
if and only if it is a Nash equilibrium in the following game: the set of players is T , their
strategies are prices pi and their payo� functions are the pro�t functions �i(pi) de�ned
above. In this game Nash equilibrium exists if the wages and trade distances are bounded
and pro�t functions are concave (see proof in [19]).

If a trader i has shortage �i < 1, his pro�t function �i(pi) is linearly increasing and
concave. But if a trader has no shortage �i = 1 depends upon distribution of consumers. In
this case the pro�t received from selling to a single consumer is an increasing fraction-linear
function until the consumer moves another seller and the pro�t function discontinuously
falls down to zero. If a trader increases price some of his previous consumers will tend
to buy from di�erent sellers. The trader makes more pro�t on consumers who still buy
from him but he loses all pro�t from the consumers gone. If distribution of consumers is
uniform (approximately same number of consumers at every level of wage in every point
of the metric space) then with increase of price the pro�t �rst grows slowly and then falls
slowly and may be concave. But if the distribution is clustered like in Fig.2 then after the
trader loses a whole cluster of consumers due to in�nitesimal price increase, his pro�t falls
by �nite quantity as increase in pro�t from remaining customers is in�nitesimal. Further
price increase contributes continuous increase in pro�t until the trader loses next cluster.
In this case the pro�t function has several local maxima and is not concave so that the
Nash equilibrium may not exist.

However, the equilibrium in the dynamical system considered may still exist in the
absence of Nash equilibrium, moreover, there may be several equilibria. This can lead to
persistent oscillations in the system. As the local maxima of the individual's pro�t function
depend upon other traders' prices, the change of price of trader i may make trader j to
switch from seeking one local maximum to another one, consequently change of price of
trader j will in
uence pro�t function of i and make the latter to change his price again
etc. Fig.3 shows time series of traders' pro�ts in case of several local maxima. The upper
local maximum is unstable and and the traders returned to the previous local maximizers.
The pro�t discontinuity is caused by simultaneous change in buying preferences and is a
consequence of singularities in distribution of consumers.
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Figure 2: Non-concave pro�t function in case of clustered distribution of consumers.

Figure 3: Times series of aggregate traders' pro�ts in case of several local maxima of pro�t
functions.
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Figure 4: Convergence to equilibrium under near-perfect infrastructure. The graph shows
evolution of average traders' price over time. All producers' prices are equal to 1.

The other source of instability contributed by singularities in distribution of consumers
is caused by sudden shortages. This danger is signi�cant when consumers change their
buying preferences too fast (high �i). If a large group of consumers has the same location
and wage then a small change of trader i's price may forces them to go to another trader
j. If the group is large enough, trader j that used to have no shortage before, will have
shortage now, so his attractiveness to consumers will fall abruptly by �nite quantity.
Then the whole group of consumers will go back to trader i and create shortage there etc.
Note that if consumers' �i is small enough the shortage occurred will not be large and
the trader will have time to overcome it by increasing his price so the trader considers his
pro�t function to be continuous. The situation becomes more dramatic with the worsening
of the infrastructure as the small changes in prices now generate comparatively high levels
of shortage.

3.2 Impact of imperfect infrastructure

Thus the average time spent on buying a unit of good qi is very important for both
consumers and traders. The expression (10) for qi contains both �j that are determined
as a result of interaction of agents and trade distances rij that are parameters. The
greater rij are, the more time buyers spend on buying, so it is reasonable to consider rij
as a measure of imperfection of infrastructure. In order to study impact of imperfection of
infrastructure, we will compare systems in which all trade distances di�er in � times, i.e.
we suppose that the trade distance matrix is proportional to some given matrix rij = �Rij

and will study dependence of dynamical properties on the coe�cient � with all other
parameters �xed.

If �! 0, then there is near perfect infrastructure, price di�erentials and trade pro�ts
are also small and there are no shortages. Indeed, if sup si < 1 then demand (5) is
bounded although increasing at �! 0, therefore �j are at least separated from zero and
qi ! 0. Hence, qi�i ! 0, and there are no shortages �i = 1. In this case system quickly
converges to equilibrium without oscillations.

Therefore if � is su�ciently small, either consumer will buy directly from producer
or consumer will buy from a trader who will buy from producer, and there can not be
any chain of traders serving consumers. When � increases, traders' prices grow no faster
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Figure 5: Phase transition because of worsening infrastructure. The graph shows depen-
dence of all traders' pro�t � on imperfection of infrastructure � in logarithm scale.

than linearly with �. Indeed, for any j if pj > pk + (si)(rij � rik), k 2 P then consumer
i will buy from producer k. If sup si < 1 then traders will lose all their demand when
prices grow faster than linearly with �. Therefore in case of non-trivial trade network
prices grow not faster than linearly with � and consumers' demand (4) falls as a=(�+ b).
Hence quantities qi�i � a�=(�+b) increase with �. The coe�cients a, b are determined by
relative trade distances Rij (the network structure), real wages si=pj , i 2 C, j 2 P and the
consumption rate 1=�i.Thus, worsening infrastructure results in qualitative change in the
self-organization processes. We can see that the trade pro�t depends on � non-smoothly.

When � is small all traders have no shortage and no long chains of traders exist.
The system quickly converges to near-perfect equilibrium and traders' pro�ts are small.
But when � grows large enough the phase transition takes place: as quantities qi�i grow
the shortages become more likely. There is no shortage in equilibrium, but one should
distinguish equilibria with �i = 1, 1=�i > 0 and �i = 1, 1=�i = 0. The former is more
likely to happen at smaller � and the latter is more typical for greater �. The latter
corresponds to the case when a trader buys from two sellers; unlike the former, it is an
equilibrium at the edge of shortage. A small change of other traders' behavior may make
the trader fall into shortage. One should mention that once caught in the shortage trap,
the system can not rapidly get out: every trader tries to get rid of shortage but if all his
counterparts have shortages and producers are too far, he simply does not have time to
satisfy all his demand. So what happens is the bursts of shortages that traders slowly take
over. But then seeking for equilibrium, which for many traders is likely to be reached at
qi�i = 1, the traders generate another burst etc. Note that in the phase transition qi�i � 1
so that traders buy from each other and longer chains of traders do exist. This leads to
an abrupt increase in trade pro�ts as can be seen in Fig.5. In this case trade hierarchies
emerge due to imperfect infrastructure rather than due to economy of scale that wholesale
traders possess if the triangle inequality is violated.

Further worsening of infrastructure gives rise to inability of traders to serve all con-
sumers, so consumers with low si (poor consumers) will prefer to buy directly from
producers,3 and traders can only satisfy the demand of upper segment of consumers that

3This is what happens in Russia. Many individuals are going abroad for shopping. There is an estimate
of USD 11 bln. of consumer goods imported annually by individuals which accounts for tens percents of
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Figure 6: Bursts of shortages at the critical value of parameter �. The graph shows time
series of average 1� �i, i 2 T .

Figure 7: A Multi-level structure.

buy at prices much higher than original prices of producers.

3.3 Emergence of trade structures

The two most interesting types of the behavior emerging may be referred to as hierarchical
stabilizing and destabilizing speculation. The former corresponds for supercritical values
of � (i. e. after the phase transition), the latter is typical for the critical situation. Both
types of roles require an appropriate geometrical layout of the system.

The former case corresponds to the multilevel system as in Fig.7. Consumers are
located at the lowest level D. They buy from the sellers at the level C while they prefer to
buy from the wholesale seller B because of having shortage. The seller B is buying from
the producer A. For �i su�ciently high it will be a persistent oscillations in the demand
for the traders' C1 and C2 good, as we have shown above. However, the demand for the
seller B's good is not oscillating, or at least is not oscillating as much as the demand at
the lower levels, because at every moment of time either C1 or C2 has shortage so he is

overall Russian import.
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Figure 8: Price destabilizing speculator: a fragment of long-run price oscillations. The
graph shows time series of the speculator's price (bold line, left scale) and average price
of other traders (right scale). Average time of price re-evaluation is 5 units of time.

likely to buy from B.
The latter case requires the distribution of consumers to be singular and an ine�cient

trader in the system to present. This trader potentially can't obtain non-zero pro�t in
the static case, i.e. it takes for him too much time to serve even minimal value of the
possible demand (note that it is discrete). Initially this trader can't help to loose all his
buyers . Then, according to the rules we have set, he is decreasing his price in order to
have non-zero demand. After he gains some buyers his demand is increasing because of
low price and not very high level of shortage. Eventually his attractiveness for buyers falls
because a) the level of shortage becomes to be too bad and b) his price is too high as he
is forced to increase his price in order to overcome it. He loses all the demand he have
initially obtained. All this lost demand now have to be distributed among the rest of the
traders. As they have already adjusted to lower demand they face sudden shortage. Then
the ine�cient trader begins to decrease price in order to gain some buyers etc.

4 Conclusion

We have considered a model that can be applied for study of self-organization processes in
trade networks in an economy with imperfect infrastructure. Such model may be applied
for analysis of market for imported consumer goods in Russia with international suppliers
being denoted as producers. The behavior of world market does not depend upon processes
in Russian economy, so producers' prices are given exogenously. In addition to analysis
of self-organization processes, the model can be used for analysis of the trade networks'
response to exchange rate shocks or introduction of new import tari�s etc.

The main result of both analytical and computational study of the model is that
evolution of trade networks depends signi�cantly on the degree of imperfection of infras-
tructure �. The other factors that in
uence stability of the system are heterogeneity of
consumers, agents' adaptation rates and geometrical layout of the trade network. Note
that the quick convergence to an e�cient equilibrium at �! 0 proves adequacy of agents'
decision-making procedures for an economy with near-perfect infrastructure, although
these procedures are far less successful under more imperfect infrastructure. Computer
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simulations have shown existence of multiple equilibria. In further works we will study
factors that determine e�ciency and stability of �nal equilibrium states or limit cycles.
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