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Abstract. In the context of consistent query answering (CQA) from
inconsistent databases, the notion of repair is fundamental. A repair is
a new database instance that minimally differs from the original, incon-
sistent database, but does satisfy the integrity constraints. Minimality
usually refers to a minimal set of tuples on which the two instances differ.
In this paper we reexamine the process of correcting census data forms,
where the notion of minimal number of changes is natural. Underlying
assumptions are made explicit, and on the basis of this, corrections of
census questionnaires are characterised as database repairs as introduced
in the context of CQA. Minimal number of changes on census question-
naires are represented as database repairs. Other interesting issues ad-
dressed here, that are also relevant in the context of database repairs, are
the notions of hard and soft constraints for the repair or correction pro-
cess, and new specific, but natural ways of minimising changes. Finally,
on the basis of the database representation, an answer set programming
approach to census questionnaires corrections is presented.

1 Introduction

The main goal of this paper is to characterise the problem of amending incorrect
census questionnaires—a problem first formalised in [10]—as a special database
repair problem, so that a comparison with existing database repair semantics
could be carried out.

Given a relational database schema, S, that includes a fixed infinite database
domain D, we can consider the first-order language, L(S), constructed using the
predicates in S. Integrity constraints can be expressed as sentences in L(S). A
database instance r can be seen as a set of ground atoms of L(S), or, alter-
natively, as a first-order Herbrand structure compatible S. Given a fixed finite
set, IC, of integrity constraints, a relational database instance is consistent if it
satisfies IC, i.e. r � IC. Otherwise, we say that r is inconsistent. We assume that
the set IC is logically consistent in the sense that there is a database instance
that satisfies IC. There may be built-in predicates in addition to those in S, but
they have the same, fixed extension in every instance.



Database repairs have been introduced in the last few years in the context
of consistent query answering (CQA); they are used as an auxiliary notion, for
defining the notion of consistent answer to a query in an inconsistent database
[1], i.e. a database that does not satisfy a given set IC of integrity constraints.
Intuitively speaking, an answer t̄ to a query Q posed to a possibly inconsistent
database r is consistent if t̄ can be obtained as usual answer to Q from every pos-
sible repair, i.e. a consistent database instance r′ that minimally differs from r.
In other words, consistent answers are invariant under minimal ways of restoring
consistency.

One may consider different notions of minimality. The most established no-
tion is the one introduced in [1], where a repair of r is defined as a consistent
instance r′ such that the symmetric difference r∆r′ is minimal under set inclu-
sion among the consistent instances that have the same schema (and domain)
as r.

Example 1. Consider the database instance r = {P (a, b), Q(c, b)} and IC : ∀x∀y
(P (x, y)→ Q(x, y)). Instance r is inconsistent, and the possible repairs are r1 =
{Q(c, b)}, r2 = {P (a, b), Q(a, b), Q(c, b)}, but not r3 = {P (a, b), Q(a, b)}, because
r∆r3 = {Q(a, b), Q(c, b)} is not minimal (it properly includes r∆r2 = {Q(a, b)}).
�

In [10, 13] an alternative notion of repair was considered, based on a different
notion of minimality of difference wrt the original instance. Basically that notion
minimises the changes in attribute values. As an example, notice that r3 in
Example 1 could be obtained by changing a for c in Q, i.e. by means of an
update affecting one attribute of the tuple in Q. In general, under this notion
of repair introduced in [1], consistent instances obtained by updates are not
minimal, since they have to be simulated in terms of changes affecting entire
tuples, through a deletion followed by an insertion. E.g. under the value based

notion of repair [13], r3 in Example 1 would be a repair.
In [10], the notion of repair is applied in the context of census questionnaire

forms, where the interest is concentrated on the actual repairs, i.e. on repairing
the forms before, say statistical processing, and not on consistent query answer-
ing as in [1] (see [5] for a survey of consistent query answering and additional
references). As certain fields in the data forms (the records) are corrected, value
based repairs are a natural alternative to consider.

As in [10], we can see each questionnaire form as a relational database in-
stance that conforms to the schema

Que(Pid ,Rel ,Sex ,Age,Mstat). (1)

Here Att = {Pid ,Rel ,Sex ,Age,Mstat} is the set of attributes of the schema.
Each form contains information about the people living in a same household in
reference to a reference person, who appears in the first tuple, in the sense that
the surrogate attribute Pid takes the value 1 on that person. There should be
one tuple per person living in the household. We assume that each attribute has a
fixed finite domain: DPid = {1, 2, 3, . . . , N}, DRel = {reference, spouse, son, parent ,



. . . ,null}, DSex = {F,M,null}, DAge = {0, 1, . . . , 120,null}, DMstat = {married ,

single,widow ,null}.

In a census questionnaire form, there may be mistakes, not all the values
make sense; and before any statistical analysis is performed, the forms that
contain mistakes are corrected. The notion of repair and the repair process itself
considered in [10] made use of some implicit assumptions. In this paper we want
to make those assumptions explicit. The treatment of census questionnaire forms
can also be applied in the context of usual relational database instances.

The paper is organised as follows. First, the original problem of census ques-
tionnaires repair is fully formalised in Section 2. Then, in Sections 3 and 4 the
problem is reduced to a problem of database repair under some special semantics.
Finally, an answer set program is sketched in Section 5.

2 Formalising Questionnaires Repairs

It becomes necessary to specify what is a correctly filled questionnaire form.
This can be expressed by means of certain soft integrity constraints IC ,1 that
we know may be violated by a form, but after the correction process, they
should be satisfied. There may be other hard integrity constraints, HIC , that
we do no accept to be violated, and if that happens, the corresponding form
can be completely discarded. In consequence, only those form that satisfy the
hard constraints can be subject to corrections if they do not satisfy the soft
constraints. Usually, as in [10], the hard ICs are implicit.

We have the (in [10] implicit) hard constraints, HIC , expressing that Pid is
a primary key, that never takes a null value; that always contain the value 1 in
Pid associated to reference; and the latter only to the former:

HIC = { ∀x, x̄1, x̄2(Que(x, x̄1) ∧Que(x, x̄2)→ x̄1 = x̄2),∀x̄ ¬Que(null , x̄),

∃x̄Que(1, reference, x̄),∀x, x̄(Que(x, reference, x̄)→ x = 1) }. (2)

The set IC of soft constrains includes the statement that none of the attributes
can be null, plus other statements that basically express conditions on the re-
lationships between attributes, e.g. it is not possible for a person to be both
married and younger than 16 (see [10] for several examples). Actually, all the
ICs in IC in [10] can be expressed as denial constraints, i.e. as formulas of the
form

∀¬(Que(T̄1) ∧ . . . ∧Que(T̄n) ∧ ϕ(T̄n+1)), (3)

where ∀ denotes the universal closure; each T̄i is a tuple of variables and con-
stants; and ϕ is a formula containing built-in predicates only, say a conjunction

1 In the literature on consistent query answering, always the ICs have been considered
soft, for this reason we keep IC as a denotation for the soft ICs. It is to IC that we
will apply the notions of consistency, repair, and consistent query answer.



of atoms of the form =, 6=, <, etc. Using a common logic programming notation,
we simply write instead of (3)

:− Que(T̄1), . . . ,Que(T̄n), ϕ(T̄n+1). (4)

Example 2. (based on [10]) Some elements in IC might be: (a) Attributes are
not null: :− Que(v, w, x, y, z), x = null , etc. (b) A spouse of a reference person
should be married: :− Que(w, spouse, x, y, z), z 6= married . (c) Any married
person should be at least 16 years old: :− Que(w, x, y, z,married), z < 16. (d)
The age difference between a parent and a child should be at least 15 years. �

In the context of CQA, tuple-based repairs of denial constraints have been
investigated in [7]. As observed there, repairs in this sense can be all obtained by
tuple deletions only. However, as we commented before, this kind of repair does
not capture the repair process of census questionnaire forms (imputation process
is the technical term [10]), because that would amount to deleting persons with
all their attributes from the form. Instead, in this application, changing values
of attributes is the way of restoring consistency wrt IC , making sure that HIC ,
the number of entries in the form, and the key values are kept. The new values
are taken from the attribute domains. Not any change is admissible. Actually,
the number of changes in attributes must be minimal.

Example 3. A questionnaire form Que containing the tuple t̄ = Que(2, spouse, F,

30, single) (the person number two of the family is declared to be the spouse
of the reference person, but she/he is also declared to be single, thus violat-
ing a constraint) may have two (alternative) repairs: one Que ′(2, spouse, F, 30,

married) (where she/he is declared married), the other Que ′′(2, daughter , F, 30,

single) (where she/he is declared to be the daughter of the reference person and
still single). �

Definition 1. Given a form r based on R that satisfies HIC , a repair of r is a
form r′ also based on R, such that:

1. r′ |= HIC .
2. r′ |= IC .
3. r′ has the same Pid -values as r.

This establishes a one-to-one correspondence ρ from tuples in r to those in
r′. We denote by t′ or ρ(t) the tuple in r′ corresponding to the tuple t in r.

4. Σt̄∈rΣA∈Attδ(t̄.A, ρ(t̄).A) is minimal,2 where the delta function δ gives the
value 1 if the arguments are the same, and 0 otherwise. �

Next in [10], preferred repairs are defined as those repairs that maximise the
number of certain rules that are satisfied. In Example 3, a preferred repair could
be Que ′(2, spouse, F, 30, married) since there may be a preference rule stating
that it is more normal to have a spouse in a family (possibly without daughters)
than to have a family with a daughter but without spouse. In this paper, we will
concentrate on repairs only.

2 As usual in databases, R.A, t̄.A, etc. denote the attribute A in relation R, the value
of attribute A in tuple t̄, resp., etc.



3 Census Forms as Expanded DB Instances

In this Section we will show how a census form can be seen as an instance of a
specific DB, which contains both the original form and the amended one.

As in [10], we can decompose relation Que into five binary relations that
basically correspond to their non key attributes: A2(·, ·), A3(·, ·), A4(·, ·), A5(·, ·),
the domain for the first argument in each of these relations is always DPid . In
this way we pass to a one relation schema to a multi-relation schema.

Example 4. The tuple t̄ = Que(2, spouse, F, 30, single) in a questionnaire form
Que is represented by the set of tuples r(t̄) := {A2(2, spouse), A3(2, F ), A4(2, 30),
A5(2, single)}. The form Que corresponds then to the database instance r :=⋃

t̄∈Que r(t̄). Notice that a form containing the tuple t̄ (or the set of tuples r(t̄)
in the alternative representation) is violating the IC (b) in Example 2. �

Certain approaches to CQA have characterised database repairs as the mod-
els of a logical specification [5]. In [2, 11, 10], e.g., new copies of the original
predicates have been introduced to denote the repaired predicates and compute
their extensions. The old predicates—and their extensions—are forgotten once
the necessary data is obtained from them. In the current scenario, since there is
a tight relationship between an original form and its corrected version, we need
to keep both the old and the new versions. In our case, we represent the repair
of a form by means of new predicates A′

2, . . . , A
′

5. Initially, they will have the
same contents as the Ai. That means, each original form r becomes an instance
of the expanded schema A2, . . . , A5, A

′

2, . . . , A
′

5, and in r, Ai = A′

i for every i.

Example 5. (example 4 continued) The tuple t̄ is now represented by the relation

r(t̄) = { A2(2, spouse), A3(2, F ), A4(2, 30), A5(2, single),

A′

2(2, spouse), A′

3(2, F ), A′

4(2, 30), A′

5(2, single) }. �

The repair process will be related to the primed predicates, but keeping the
reference to the old form. A repair of a form in this multi-relational represen-
tation will have the same extensions as the original form for all its non primed
predicates Ai; only the primed predicates are subject to change.

Let us denote by dR the schema obtained from R by the decomposition
of Que into the Ais. dR denotes the schema dR extended with the A′

is. In
consequence, tuples are relations over schema dR (see Example 4). We will keep
denoting a form in this representation as a database instance r over the schema
dR.

4 Census Forms Repairs as DB Repairs

A repair of a form r as introduced in the preceding section can be identified with
a mapping ρ that associates with every relation r(t̄), a new relation ρ(r(t̄)) that
keeps the non primed tuples the same, but possibly changes the primed tuples.



Example 6. (example 5 continued) The “tuple” r(t̄) in a form r, could have in
a repair of r the following image:

ρ(r(t̄)) = { A2(2, spouse), A3(2, F ), A4(2, 30), A5(2, single),

A′

2(2, spouse), A′

3(2, F ), A′

4(2, 30), A′

5(2,married)}.

These should be, in a repair, the only tuples related to 2 (a condition still to be
imposed in the formal definition of repair in this framework, see below). Another
repair will necessarily have the same non primed tuples, but could have, e.g.,
the following primed tuples: A′

2(2, daughter), A′

3(2, F ), A′

4(2, 12), A′

5(2, single);
this repair respecting the IC (d) in Example 2. �

In order to impose the conditions on repairs in relation to the correspondence
between non primed and primed tuples, we need to introduce the cardinality

constraints that will ensure that Pids are kept under repairs

CC := {∀x∀z∃y(Ai(x, z)→ A′

i(x, y)) | i = 2, 3, 4, 5}. (5)

Now, HIC will denote the formulas in (2), but with Que replaced by the Ai’s. For
example, we obtain, among others, ∀x, y, z(A3(x, y)∧A3(x, z)→ y = z) ∈ HIC .
Furthermore, HIC ′, IC ′ denote the formulas HIC , IC with the Que predicate
replaced by the A′

i predicates. For example, ∀x, y, z(A′

3(x, y)∧A′

3(x, z)→ y = z)
belongs to HIC ′; and

:− A′

2(v, w), A′

3(v, x), A′

4(v, y), A′

5(v, z), w = spouse, z 6= married , (6)

corresponding to the IC in Example 2(b), belongs to IC ′. Now, r|dR denotes
the restriction of r to schema dR, etc. Notice that the only ICs that mix prime
and non primed predicates are those in CC . Finally, we need to compare the
primed and non primed parts of an instance over schema r|dR. In consequence,
for such an instance r, we denote ∆(r) := {A′

i(a, b) | exists d such that (a, d) ∈
Ai and d 6= b}.

Definition 2. (a) Let r be a form instance over dR such that r|dR satisfies
HIC . A sub-repair of r is an instance r∗ over the same schema, such that:

1. r∗|dR = r|dR.
2. r∗ |= CC .
3. r∗ |= HIC ′.
4. r∗ |= IC ′.

(b) r∗ is a subset-oriented repair (s.o. repair) of r if it is a sub-repair of r such
that ∆(r∗) is minimal under set inclusion over all instances that are repairs of
r.
(c) r∗ is a cardinality-oriented repair (c.o. repair) of r if it is a repair of r such
that the cardinality |∆(r∗)| is minimal over all form instances that are repairs
of r. �

Proposition 1. Every c.o. repair of r is also a s.o. repair of r.



Proof. Let r∗ be a c.o. repair of r. Assume that it is not a s.o. repair. Then, there
exists a repair r∗∗ of r, such that ∆(r∗∗) $ ∆(r∗). It follows that |∆(r∗∗)| <

|∆(r∗)|; a contradiction. �

Notice that this form of repair extends the notion introduced in [1] in the
sense that in the minimisation process some predicates—in this case the Ai’s—
remain fixed, while their primed versions are subject to changes. Another inter-
esting issue, that emerges from keeping in the same instance the old and the
repaired part, with ICs like (5) that make the two part interact, is that we no
longer repair by simply deleting tuples, but we have to replace them by new
ones.3. In this way we capture the “correction based repairs” found in [10] into
repairs as introduced in [1] or cardinality based repairs (but still tuple oriented)
as the approach in [8], that was re-introduced in the context of CQA in [2].

Example 7. The form r = {A′

2(1, reference), A′

3(1,M), A′

4(1, 35), A′

5(1,married),
A′

2(2, spouse), A′

3(2, F ), A′

4(2, 30), A′

5(2, single) } is inconsistent if we have the
constraint (b) in Example 2.4 Candidates to repairs of it are:

(a) r1 = {A′

2(1, reference), A′

3(1,M), A′

4(1, 35), A′

5(1,married), A′

2(2, spouse),
A′

3(2, F ), A′

4(2, 30), A′

5(2,married)}, with ∆(r1) = {A′

5(2,married)}.
(b) r2 = {A′

2(1, reference), A′

3(1,M), A′

4(1, 35), A′

5(1,married), A′

2(2, sister),
A′

3(2, F ), A′

4(2, 30), A′

5(2, single)}, with ∆(r2) = {A′

2(2, sister)}.
(c) r3 = {A′

2(1, reference), A′

3(1,M), A′

4(1, 35), A′

5(1,married), A′

2(2, daughter),
A′

3(2, F ), A′

4(2, 12), A′

5(2, single)},
with ∆(r3) = {A′

2(2, daughter), A′

4(2, 12)}.

Here changes appear underlined. Repairs r1 and r2 are c.o. repairs, but not r3.
However the three of them are s.o. repairs. �

According to Section 2, repairs of questionnaire forms should be c.o. repairs.
In order to capture c.o. repairs as s.o. repairs, and only those, we need to modify
our notion of repair. So far, we have been playing with changes of tuples in
relations, however, considering the denial form (4) for the ICs IC , that in IC ′

take a form like in (6), we may decide to see the built-ins as database tuples,
and as such, subject to changes.

More precisely, each census form r can be represented in the form as a set req

of atoms: A′

2(1, Y
2
1 ), eq(Y 2

1 , c21), A
′

3(1, Y
3
1 ), eq(Y 3

1 , c31), . . . , A′

2(2, Y
2
2 ), eq(Y 2

2 ,

c22), . . ., where the cij are constants, possibly null, in the corresponding do-
main, and eq(·, ·) is the equality predicate. There might other built-ins as well.
On the other side, the ICs in IC ′ are of the form

:− A′

2(X,Y 2), A′

3(X,Y 3), A′

4(X,Y 4), A′

5(X,Y 5), eq(Y 2, c2), . . . (7)

3 With denials constraints alone, repairs, as mentioned before, could be all obtained
through tuple deletions only. However this is no longer true in the presence of a
“referential IC like” constraint like (5).

4 We are omitting the non primed part, that contains the same values as the primed
part.



Example 8. (example 7 continued) The form instance can be written as

req = {A′

2(1, Y
2
1 ), A′

3(1, Y
3
1 ), A′

4(1, Y
4
1 ), A′

5(1, Y
5
1 ), eq(Y 2

1 , reference), . . . ,
A′

2(2, Y
2
2 ), A′

3(2, Y
3
2 ), A′

4(2, Y
4
2 ), A′

5(2, Y
5
2 ), eq(Y 2

2 , spouse), eq(Y 4
2 , 30),

eq(Y 5
2 , single), . . .};

and, for example, (6) can be written as the two denials

:− A′

2(v, w), A′

3(v, x), A′

4(v, y), A′

5(v, z), eq(w, spouse), eq(z, single),
:− A′

2(v, w), A′

3(v, x), A′

4(v, y), A′

5(v, z), eq(w, spouse), eq(z,widow). �

Since the cardinality constrains prevent us from deleting the A′

i atoms, the
form can be repaired by deleting equality atoms of the form eq(X, c), what causes
the introduction of the non-equality atom neq(X, c).5

Example 9. (example 8 continued) Deleting equality tuples from the second line
in the form in the example according to the second (and violated) denial there,
we obtain, among possibly others, the following repairs:

r
eq∗
1 = {. . . , A′

2(2, Y
2
2 ), A′

3(2, Y
3
2 ), A′

4(2, Y
4
2 ), A′

5(2, Y
5
2 ), eq(Y 2

2 , spouse), eq(Y 4
2 , 30),

neq(Y 5
2 , single), . . .};

r
eq∗
2 = {. . . , A′

2(2, Y
2
2 ), A′

3(2, Y
3
2 ), A′

4(2, Y
4
2 ), A′

5(2, Y
5
2 ), eq(Y 4

2 , 30), eq(Y 5
2 , single),

neq(Y 5
2 , spouse), . . .};

r
eq∗
3 = {. . . , A′

2(2, Y
2
2 ), A′

3(2, Y
3
2 ), A′

4(2, Y
4
2 ), A′

5(2, Y
5
2 ),neq(Y 2

2 , spouse),
neq(Y 4

2 , 30), eq(Y 5
2 , single), . . .}.

In order to determine which of these are s.o. repairs (as defined in Section 1 for
database instances) we need to compute the following set differences:

(a) req∆r
eq∗
1 = {eq(Y 5

2 , single),neq(Y 5
2 , single)}.

(b) req∆r
eq∗
2 = {eq(Y 2

2 , spouse),neq(Y 2
2 , spouse)}.

(c) req∆r
eq∗
3 = {eq(Y 4

2 , 30),neq(Y 4
2 , 30), eq(Y 5

2 , single),neq(Y 5
2 , single)}.

The first two set differences are incomparable, whereas req∆r
eq∗
1 $ req∆r

eq∗
3 . In

consequence, we discard r
eq∗
3 .6 �

We can see each of the sub-repairs in Example 7 as an element of the “class
of sub-repairs” determined by r

eq∗
1 , r

eq∗
2 , r

eq∗
3 , resp. Notice that any of the actual

sub-repairs obtained by admissible instantiations of these classes of extended s.o.
repairs correspond to a c.o. repair of the form. The following theorem gives a
precise characterisation of c.o. repairs with respect to s.o. repairs.

Theorem 1. For every census questionnaire form r as described in Section 3
that satisfies HIC , and a c.o. repair r∗ of it according to Definition 2, there
is a unique s.o. repair req∗ of req , such that r∗ can be obtained from req∗ by

5 We will assume for the moment that we have equality atoms in the denials, but it
should not be difficult to extend the treatment to other built-ins.

6 Notice that we could work everywhere with the one directional set difference req∗rreq .



instantiating all the variables in req∗ by (non null) values in the corresponding
domains. Furthermore, any ground instantiation of the variables in a s.o. repair
req∗ that satisfies HIC ′ ∪ IC ′ is a c.o. repair of the form r.7 �

5 Answer Set Programming for Form Repairs

It is possible to obtain the forms repairs as the answer sets of a logic program.
Notice that in [10] the programs used to compute the c.o. repairs are based on the
assumption that at most two changes suffice to repair the forms. The reason is
that when more changes are possible, the programs become much more involved.
In the context of database repairs, general programs are introduced in [11] (see
also [2]), but for ICs with more than two database literals (read, with more
than two changes possible), the rules need to consider an exponential number
of combinations of literals. A simpler solution to the problem of characterising
database repairs as answer sets of logic programs, that keeps the number of rules
linear in the number of database literals in the ICs, is given in [3, 4]. There, the
programs use annotations, i.e. new constants used as values for a new attribute
that expands each of the database tables.

An atom in (outside) the original database is annotated with td (fd). Anno-
tations ta and fa are considered advisory values, to solve conflicts between the
database and the ICs. If an atom gets the derived annotation fa, it means an
advise to make it false, i.e. to delete it from the database. Similarly, an atom
that gets the annotation ta must be inserted into the database. The logic pro-
gram should have the effect of repairing the database. Single, local repair steps
are obtained by deriving the annotations ta or fa. This is done when each IC is
considered in isolation, but there may be interacting ICs, and the repair process
may take several steps and should stabilise at some point. In order to achieve
this, we use annotations t?, f?. The latter, for example, groups together the
annotations fd and fa for the same atom. These derived annotations are used to
give a feedback to the bodies of the rules that produce the local, single repair
steps, so that a propagation of changes is triggered. The annotations t?? and f??

are just used to read off the literals that are inside (resp. outside) a repair.

Next we give an annotated example program. The repair should be read off
from the double starred A′

i.

Example 10. (example 5 continued) Consider a set of integrity constraints con-
sisting of constraints a) and b) from example 4 and ICs: c) the partner of the
reference person is not married to any other person, d) the spouse of the refer-
enced person has a different sex.

1. Database content.

7 Notice that by construction of the forms r (and req) and their repairs req∗, the
cardinality constraints are automatically satisfied. Notice also that due to the ICs,
the variables cannot be instantiated in null values.



(a) A set of facts for non primed predicates given by decomposition of the
original database.
A2(X,Y )← Que(X,Y, , , ).
A3(X,Y )← Que(X, ,Y, , ).
A4(X,Y )← Que(X, , , Y, ).
A5(X,Y )← Que(X, , , , Y ).
domd(X)← Que(X, , , , ). . . . domd(X)← Que( , , , ,X).

(b) A set of possible values for each attribute.
EQ2(X,Y )← A1(X,Y ), Y == spouse.

EQ2(X,Y )← A1(X,Y ), Y == parent.

and so on for each attribute and a domain value for it.
(c) Initial values of unrepaired primed predicates.

A′

2(X,Y, td)← A2(X,Y ).
· · ·
A′

5(X,Y, td)← A5(X,Y ).

2. Rules for closed world assumption.
A′

2(X,Y, f∗)← notA′

2(X,Y, td).
A′

3(X,Y, f∗)← notA′

3(X,Y, td).
A′

4(X,Y, f∗)← notA′

4(X,Y, td).
A′

5(X,Y, f∗)← notA′

5(X,Y, td).
3. Annotation rules.

A′

2(X,Y, f∗)← A′

2(X,Y, fa).
A′

3(X,Y, f∗)← A′

3(X,Y, fa).
A′

5(X,Y, f∗)← A′

5(X,Y, fa).
A′

2(X,Y, t∗)← A′

2(X,Y, ta).
A′

2(X,Y, t∗)← A′

2(X,Y, ta).
A′

2(X,Y, t∗)← A′

2(X,Y, ta).
A′

2(X,Y, t∗)← A′

2(X,Y, td).
A′

2(X,Y, t∗)← A′

2(X,Y, td).
A′

2(X,Y, t∗)← A′

2(X,Y, td).
4. Interpretation rules.

A′

2(X,Y, t∗∗)← A′

2(X,Y, ta).
A′

2(X,Y, t∗∗)← A′

2(X,Y, td), notA′

2(X,Y, fa).
A′

2(X,Y, f∗∗)← A′

2(X,Y, fa).
A′

2(X,Y, f∗∗)← notA′

2(X,Y, ta), notA′

2(X,Y, td).
· · ·
A′

5(X,Y, t∗∗)← A′

5(X,Y, ta).
A′

5(X,Y, t∗∗)← A′

5(X,Y, td), notA′

5(X,Y, fa).
A′

5(X,Y, f∗∗)← A′

5(X,Y, fa).
A′

5(X,Y, f∗∗)← notA′

5(X,Y, ta), notA′

5(X,Y, td).
5. Rules for integrity constraints

(a) Census integrity constraints.
A spouse of a reference person is married.
A′

2(X,Y, fa) ∨A′

5(X,Z, ta) ←
A′

2(X,Y, t∗) ∧A′

5(X,Z, f∗), Y == spouse, Z == married.

A partner of a reference person is not married.



A′

2(X,Y, fa) ∨A′

5(X,Z, fa) ←
A′

2(X,Y, t∗) ∧A′

5(X,Z, t∗) ∧ Y == partner ∧ Z == married.

A spouse of a reference person has a different sex.
A′

3(1, S, fa) ∨A′

3(X,S1, fa) ∨A′

2(X,Y, fa) ←
A′

3(1, S, ts) ∧A′

3(X,S1, ts) ∧A′

2(X,Y, ts) ∧ S == S1 ∧ Y == spouse

(b) Referential integrity constraints.
Primed predicates are contained in possible value predicates (but possi-
ble value predicates can not be changed in a repair).
A′

2(X,Y, fa)← A′

2(X,Y, t∗), notEQ2(X,Y )
· · ·
A′

5(X,Y, fa)← A′

5(X,Y, t∗), notEQ5(X,Y )
The first-attribute projection of non primed predicates is contained in
first-attribute projection of primed predicates (non-primed predicates
can not be repaired).
aux2(X)← A′

2(X,Y, ta).
aux2(X)← A′

2(X,Y, td), notA′

2(X,Y, fa)
A′

2(X,Yc, ta)←
A2(X,Y ), notaux2(X), notA′

2(X,Y1, td), EQ2(X,Yc), choice((X), (Yc)).
· · ·
aux5(X)← A′

5(X,Y, ta).
aux5(X)← A′

5(X,Y, td), notA′

5(X,Y, fa)
A′

5(X,Yc, ta)←
A5(X,Y ), notaux5(X), notA′

5(X,Y1, td), EQ5(X,Yc), choice((X), (Yc)).

6. Denial constraints for coherence.
← A′

2(X,Y, ta), A′

2(X,Y, fa).
· · ·
← A′

5(X,Y, ta), A′

5(X,Y, fa). �

6 Conclusions

In this paper, starting from [10], we have formalised census data repairs in precise
terms, capturing both implicit and explicit assumptions on census data forms.
Those assumptions we represented and classified as hard or soft constraints. The
former are assumed to be satisfied both before and after the form correction pro-
cess. There should be a correspondence of values between the old and the new
version of the form. This was captured by means of the cardinality constraints.
We called them this way because them, in combination with explicit key con-
straints, impose a one to one correspondence between the key values in the two
versions of the form.

We also managed to capture census form repairs as database repairs in the
sense of the definition introduced in [1]. The former minimise the number of
values corrected in fields in the form, whereas the latter minimise, wrt set in-
clusion, the set of tuples changed in the form seen as a database instance. This
simple form of reduction could be applied in other scenarios, where the notion
of repairs is cardinality based.



Here we just sketch an alternative way of obtaining such a reduction of census
form repairs to set inclusion based database repairs: we expand the schema with
one predicate C(·), with domain N. This predicate and the domain will allow us
to count (in a very limited range; we do not need to go beyond the number of non
field keys in the original form, in this case four). Expand an original questionnaire
form r as in Definition 2 with C(0). Intuitively, there is 0 difference between the
Ai and the A′

i. Now, consider the following finite number of ICs:

#0: C(0)← C(1) ∨

5∧

i=2

∀xy (Ai(x, y)↔ A′

i(x, y));

#1: C(1)← C(2) ∨ ∃=1xy(A2(x, y) ∧ ¬A′

2(x, y)) ∧
5∧

i=3

∀xy(Ai(x, y)↔ A′

i(x, y)) ∨ · · · ;

#2: C(2)← C(3) ∨ there are exactly 2 differences;

. . .

#4: · · · .

Each repair r∗ will have an extension Cr∗ = {0, 1, ..., n} (n = 4 in the examples).
We can compare repairs wrt to set inclusion of the predicate C. The minimal
wrt set inclusion will be the same as those minimal wrt number of changes.

According to the representation we chose here for forms and their repairs,
where both the old and new values are represented, the kind of minimisation we
are performing keeps certain tables fixed (the Ai and the A′

i) and others change
(like eq and neq). It is possible to show that the circumscriptive approach to
database repairs presented in [6] can be easily extended to handle this kind of
priorities (or minimality with fixed predicates).

We believe that it is not very difficult to extend our approach to handle
built-ins other that equality and inequality. This is subject to further work.
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