
The coDB Robust Peer-to-Peer Database System

Enrico Franconi1, Gabriel Kuper2, Andrei Lopatenko1,3, and Ilya Zaihrayeu2

1 Free University of Bozen–Bolzano, Faculty of Computer Science, Italy,
franconi@inf.unibz.it, lopatenko@inf.unibz.it

2 University of Trento, DIT, Italy, kuper@acm.org, ilya@dit.unitn.it
3 University of Manchester, Department of Computer Science, UK

Abstract. In this paper we give an overview of the coDB semantically
well-founded P2P DB system. A network of databases, possibly with
different schemas, are interconnected by means of GLAV coordination
rules, which are inclusions of conjunctive queries, with possibly existen-
tial variables in the head; coordination rules may be cyclic. Each node
can be queried in its schema for data, which the node can fetch from its
neighbours, if a coordination rule is involved. Correctness and termina-
tion of query answering is guaranteed also in the case of runtime change
in the topology of the network.

1 Introduction

In the paper [Franconi et al., 2003] we introduced a general logical and computa-
tional characterisation of peer-to-peer (P2P) database systems. We first defined a
precise model-theoretic semantics of a P2P system, which allows for local incon-
sistency handling. We then characterised the general computational properties
for the problem of answering queries to such a P2P system. Finally, we devised
tight complexity bounds and distributed procedures in few relevant special cases.
The basic principles of the characterisation given in [Franconi et al., 2003] are:
(a) the role of the coordination formulas between nodes is for data migration (as
opposed to the role of logical constraints in classical data integration systems);
(b) computation is delegated to single nodes (distributed local computation);
(c) the topology of the network may dynamically change; (d) local inconsistency
does not propagate; (e) computational complexity can be low, compared with
classical data integration systems. In [Franconi et al., 2003] we emphasise the
difference between P2P systems and standard classical logic-based integration
systems, as for example described in [Lenzerini, 2002a].

Let’s consider now an example explaining why the P2P semantics is different
from the classical semantics given to data integration systems. Suppose we have
three distributed databases. The first one (DB1) is the municipality’s internal
database, which has a binary table Citizen-1 which contains the name of the
citizen and the marital status (with values single or married). The second one

This work has been partially supported by the EU projects Sewasie, KnowledgeWeb,
and Interop.



(DB2) is a public database, obtained from the municipality’s database, with
two unary tables Male-2 and Female-2. The third database (DB3) is the Pen-
sion Agency database, obtained from a public database, with the unary table
Citizen-3 and a binary table Marriage-3 (stating that two people are married).
The three databases are interconnected by means of the following rules:

1 : Citizen-1(x, y) ⇒ 2 : (Male-2(x) ∨ Female-2(x))
(this rule connects DB1 with DB2)

2 : Male-2(x) ⇒ 3 : Citizen-3(x)
2 : Female-2(x) ⇒ 3 : Citizen-3(x)

(these rules connect DB2 with DB3)

In the classical logical model, the Citizen-3 table in DB3 should be filled with
all of the individuals in the Citizen-1 table in DB1, since the following rule is
logically implied:

1 : Citizen-1(x) ⇒ 3 : Citizen-3(x)

However, in a p2p system this is not a desirable conclusion. In fact, rules should
be interpreted only for fetching data, and not for logical computation. In this
example, the tables Female-2 and Male-2 in DB2 will be empty, since the data
is fetched from DB1, where the gender of any specific entry in Citizen-1 is not
known. From the perspective of DB2, the only thing that is known is that each
citizen is in the view (Female-2 ∨ Male-2). Therefore, when DB3 asks for data
from DB2, the result will be empty.
In other words, the rules

2 : Male-2(x) ⇒ 3 : Citizen-3(x)
2 : Female-2(x) ⇒ 3 : Citizen-3(x)

will transfer no data from DB2 to DB3, since no individual is known in DB2 to
be either definitely a male (in which case the first rule would apply) or definitely
a female (in which case the second rule would apply). We only know that any
citizen in DB1 is either male or female in DB2, and no reasoning about the rules
should be allowed.

In order to explain the importance of cyclic rules, suppose now to have an
additional cyclic pair of rules connecting DB1 and DB3 as follows:

1 : Citizen-1(x, “married”) ⇒ 3 : Marriage-3(x, y)
3 : Marriage-3(x, y) ⇒ 1 : Citizen-1(x, “married”) ∧

1 : Citizen-1(y, “married”)

These rules serve the purpose to synchronise the people who are known to
be married in DB1 (by means of the Citizen-1 table) with the people who are
known to be married in DB3 (by means of the Marriage-3 table). Suppose that
it is known in DB1 that only John is married, and nothing in known in DB3

about marriages. In the classical logical model, a query to DB3 asking for the
non existence of some married person different from John will get a negative

2



answer1. In a P2P setting, we actually expect a positive answer, since the only
information that is fetched is about John.

In the paper [Franconi et al., 2004] we thoroughly analysed a distributed
procedure for the problem of local database update in a network of database
peers, as defined in [Franconi et al., 2003]. The problem of local database update
is different from the problem of query answering. Given a P2P database system,
the answer to a local query may involve data that is distributed in the network,
thus requiring the participation of all nodes at query time to propagate in the
direction of the query node the relevant data for the answer, taking into account
the (possibly cyclic) coordination rules bridging the nodes. On the other hand,
given a P2P database system, a “batch” update algorithm will be such that all
the nodes consistently and optimally propagate all the relevant data to their
neighbours, allowing for subsequent local queries to be answered locally within
a node, without fetching data from other nodes at query time. The update
problem has been considered important by the P2P literature; most notably,
recent papers focused on the importance of data exchange and materialisation
for a P2P network [Fagin et al., 2003; Daswani et al., 2003].

The coDB P2P DB system we survey here implements the above ideas in a
very general fashion. A network of databases, possibly with different schemas,
can be interconnected by means of GLAV coordination rules, which are inclusions
of conjunctive queries, with possibly existential variables in the head [Calvanese
et al., 2003]. Each node can be queried in its schema for data, which the node
can fetch from its neighbours, if a coordination rule is involved. Note that rules
can be cyclic, i.e., a fix-point computation may be needed among the nodes in
order to get all the data that is needed to answer a query.

The coDB P2P DB system is robust in the sense that it supports dynamic
networks: even if nodes and coordination rules appear or disappear during the
computation, the proposed algorithm will eventually terminate with a sound and
complete result (under appropriate definitions of the latter).

Note that our approach is novel with respect to the known P2P and data
integration literature for several reasons. As we have shown, our P2P semantics
is different from the classical (first-order logic) data integration semantics. In
the context of P2P systems, are only two other approaches which deal in a well
founded way with cycles in the coordination rules [Calvanese et al., 2003; Serafini
and Ghidini, 2000]. The acyclic case (e.g., [Halevy et al., 2003]) is relatively
simple – a query is propagated through the network until it reaches the leaves
of the network. The work in [Calvanese et al., 2003] uses a notion of semantics
similar to the semantics introduced in [Franconi et al., 2003], but it describes
only a global algorithm, that assumes a central node where all computation is
performed. The paper [Serafini and Ghidini, 2000] describes a local algorithm to
compute query answers, but it does not allow real GLAV coordination rules (with
existential variables in the head). The algorithms in coDB support such variables,
in a similar fashion to the global non-distributed algorithm of [Calvanese et al.,
2003; 2004]. None of the above approaches support dynamic networks. The body

1 Note that the semantics of a query is the certain answer semantics.

3



of work about distributed data replication uses possibly similar techniques, such
as “lazy replication” and “epidemic algorithms” [Holliday et al., 2003; Wuu and
Bernstein, 1984], which are not directly applicable since they rely on a different
semantics of the mappings; we plan to look deeper into these techniques which
may be useful for optimisation purposes.

2 P2P database systems

Our P2P framework is based on the logical model of [Franconi et al., 2003].

Definition 1 (Local database) Let I be a nonempty finite set of indexes {1, 2,

. . . , n}, and C be a set of constants. For each pair of distinct i, j ∈ I, let Li be
a first-order logic without function symbols, with signature disjoint from Lj but
for the shared constants C. A local database DB i is a theory on the first order
language Li.

Nodes are interconnected by means of coordination rules. A coordination rule
allows a node i to fetch data from its neighbour nodes j1, . . . , jm.

Definition 2 (Coordination rule) A coordination rule is an expression of the
form

j1 : b1(x1,y1) ∧ · · · ∧ jk : bk(xk,yk) ⇒ i : h(x,y)

where j1, . . . , jk, i are distinct indices, each bl(xl,yl) is a formula of Ljl
, and

h(x,y) is a formula of Li, and x = x1 ∪ · · · ∪ xk.

Note that we are making the simplifying assumption that the equal constants
mentioned in the various nodes refer to equal objects, i.e., that they play the
role of URIs (Uniform Resource Identifiers). Other approaches consider domain
relations to map objects between different nodes [Serafini et al., 2003], and we
plan to consider such extensions in future work.

A P2P system is just the collection of nodes interconnected by (possibly
cyclic) rules.

Definition 3 (P2P system) A peer-to-peer (P2P) system is a tuple of the
form MDB = 〈LDB ,CR〉, where LDB = {DB1, · · · ,DBn} is the set of local
databases, and CR is the set of coordination rules.

A user accesses the information hold by a P2P system by formulating a query
at a specific node.

Definition 4 (Query) A local query is a first order formula in the language
of one of the local databases DB i.

The semantics of a P2P system and of queries is derived from the general
logical framework presented in [Franconi et al., 2003]. In the current version of
the coDB system, we assume that all nodes are relational databases; coordination

4



rules may contain conjunctive queries in both the head and body (without any
safety assumption and possibly with built-in predicates in the body); the body
involves only one node per rule. Under these assumptions, computing query
answers is reducible to data fetching [Franconi et al., 2003; Calvanese et al.,
2003].

To describe the P2P networks we introduce the notion of a dependency edge
between nodes of a P2P network.

Definition 5 There is a dependency edge from a node i to node j, if there is a
coordination rule with head at node i and body at node j.

Note that the direction of a dependency edges is the opposite to that of the
rules. The direction of a rule is the direction in which data is transfered, whereas
the dependency edge has the opposite orientation. In this paper we use MDB

to denote a P2P system, using terms such as P2P system or a network ; please
note that we consider the general case when the network is cyclic. I is used to
denote a set of all nodes in given MDB, C denotes the set of all coordination
rules, and L the set dependency edges between nodes in a network derived from
C. Subsets of I are denoted by A. We assume that I, L, and C are always finite
sets.

Definition 6 A dependency path for a node i is a path 〈i1, i2, . . . , in〉 of depen-
dency edges, such that 1) i1 = i ; 2) 〈i1, . . . , in−1〉 is a simple path (no one node
appears twice).

Definition 7 A maximal dependency path for a node i is a dependency path
such that if we add any node to the path, the result will not be a dependency
path. In this paper, when we describe dependency paths for a node i, we omit the
first node (i).

As an example, consider a P2P system with the follow schemas and rules:

A : a(X, Y )

B : b(X, Y )

C : c(X, Y ), f(X)

D : d(X, Y )

E : e(X, Y )

r1 : E : e(X, Y ) → B : b(X, Y )

r2 : B : b(X, Y ), b(Y ), Z → C : c(X, Z)

r3 : C : c(X, Y ), c(Y, Z) → B : b(X, Z)

r4 : B : b(X, Y ), b(X, Z), X 6= Z → A : a(X, Y )

r5 : A : a(X, Y ) → C : f(X)

r6 : A : a(X, Y ) → D : d(Y, X)

r7 : D : D(X, Y ), D(Y, Z) → C : c(X, Y )

The dependency edges and the maximal dependency paths for the example are:

5



A

BC

D

E

# path # path # path # path

A ABCA B BE C BE D ABE
A ABE B BCAB C BC D ABCD
A ABCB B BCB C DABC D ABCB
A ABDA B BCDAB C ABC D ABCA

C ABE

3 Dynamic behaviour of the P2P network

One of the distinctive characteristics of P2P systems is that the network can
vary dynamically. Assume that the network MDB consist initially of a set of
nodes I, and that C is an initial set of coordination rules with L being the initial
set of dependency edges. We model network dynamicity by adding/removing
coordination rules between nodes, and therefore deletion of a node is modelled
by deleting all coordination rules that relate to this node. With respect to query
answering and update, adding/removing nodes with coordination rules is easily
seen to be equivalent to the assumption that all nodes are present from the start,
and that only coordination rules are changed.

We define an atomic network change operation as follows.

– addLink(i,j,rule,id): add the coordination rule rule from node j (the body)
to node i (the head). id is the name of a rule, which should be unique for a
given pair of nodes.

– deleteLink(i,j,id): delete the coordination rule id between nodes i and j

Definition 8 1. A change U of a network MDB is a sequence of atomic
change operations over MDB.

2. A finite change of a network is a finite sequence of atomic changes.
3. An initial subchange U1 of a change U is a initial prefix of U
4. A subchange UA of U in respect to A ⊂ I is a set of atomic operations of

U, relevant to A and ordered with the same order as in U

We assume that in the case of atomic change the network will be notified
about the change in the following cases:

1. in case of addLink(i,j,rule,id), the node i (which will be able to fetch data
by this rule) gets a notification;

2. in case of deleteLink(i,j,id), the node i (which will be unable to fetch data
by this rule) gets a notification.

Definition 9 1. A sound answer of a query Q in a network subject to runtime
changes, is an answer to the query that is included in the result that we would
obtain if we executed all the addLink statements before running Q, and did
not execute the deleteLink statements at all.

6



2. A complete answer of a query Q in a network subject to runtime changes,
is an answer to the query that contains the result that we would obtain if we
executed all the deleteLink statements before running Q, and did not execute
the addLink statements at all.

The basic idea behind this definition is that we cannot know in advance what
the state of the database will be at termination time. Therefore, in the definition
we require that a sound and/or complete answer will be classically sound and/or
complete with respect to the part of the database that is unchanged. The result
with respect to the part that is changed will depend on the order and timing of
the execution of the changes. In this sense, the answer to a query in a network
subject to “small” changes will be still meaningful with respect to the majority
of the data that resides in the stable parts of the network. The following theorem
states that our update algorithm behaves well with respect to change.

Theorem 1 1. For a finite runtime change of a network, the update algorithm
will terminate, and it gives sound and complete answers to queries in the
network subject to runtime changes.

2. In the case of an infinite runtime change to the network, the update algorithm
may not terminate.

However, in general we cannot assume that a network change is finite. In the
general case, therefore, the nodes in the network may never reach the fix-point
– or at least, we may not be able to show that they have reached a fix-point.
We now give a condition on when a subset of nodes can reach a fix-point, even
under infinite change of the whole network.

Definition 10 1. A set of nodes A1 is separated from a set of nodes A2 in
a P2P network I if there is no dependency path from any node in A1 that
involves a node in A2.

2. A set of nodes A1 is separated from a set of nodes A2 in P2P network I

with respect to a change U if for any subchange of U there is no dependency
path from a node in A1 involving a node in A2 in the network we obtain by
applying that subchange.

Theorem 2 If, for a network I, a set of nodes A is separated from (I \ A)
with respect to a (possibly infinite) change U over I, and UA is finite, then
the algorithm, when applied to a node in A, terminates, yielding a sound and
complete answer.

Lemma 3 For a finite runtime change of the network, the complexity of the
update algorithm at each node is in 2EXPTIME with respect to the size of the
change.

4 The architecture of the coDB system

We implement database peers on top of JXTA [Project JXTA, 2004]. JXTA
specifies a set of protocols which provide implementation of basic, as well as

7



Fig. 1. First level architecture

rather sophisticated P2P functionalities. As basic functionalities we can distin-
guish: definition of a peer on a network; creation of communication links be-
tween peers (called pipes); creation of messages, which can envelope arbitrary
data (e.g. code, images, queries); sending messages onto pipes, etc. Examples
of more sophisticated functionalities provided by JXTA are: creation of peer
groups; specification of services and their implementation on peers; advertis-
ing of network resources (i.e. peers, pipes, peer groups, services, etc.) and their
discovery in a distributed, decentralised environment. JXTA has a number of
advantages for developing P2P applications. It provides IP independent naming
space to address peers and other resources, it is independent of system platforms
(e.g. Microsoft Windows, Macintosh or UNIX) and networking platforms (e.g.
Bluetooth, TCP/IP), it can be run on various devices such as PCs or PDAs,
and provides support for handling firewalls and NATs. We have chosen JXTA
since it already gives practically all basic building blocks for developing P2P
applications and thus allow the developer to concentrate on implementation of
specific functionalities a given application is required to provide.

The first level logical architecture of a node, inspired by [Bernstein et al.,
2002], is presented on Figure 1. A node consists of P2P Layer, Local Database
(LDB) and Database Schema (DBS). DBS describes part of LDB, which is shared
for other nodes. P2P Layer consists of User Interface (UI), Database Manager
(DBM), JXTA Layer and Wrapper. Nodes connect to a P2P database network
by means of connecting to other peer(s), as it is schematically shown on Figure
1 (see the arrow from JXTA Layer to the network and arrows between nodes in
the network).

By means of the UI users can commence network queries and updates, browse
streaming results, start topology discovery procedures, and so on. Among other
things, th UI allows to control other modules of P2P Layer. For instance, user
can modify the set of coordination rules w.r.t. other nodes, define connection
details for Wrapper, etc. DBM processes both user queries and queries coming
from the network, as well as global and query-dependent update requests. It is
also responsible for processing of query results coming both from LDB and the

8



network, as well as for processing of updates results coming from the network.
Finally, DBM manages propagation of queries, update requests, query results and
update results on the network. JXTA Layer is responsible for all node’s activities
on the network, such as discovering of previously unknown nodes, creating pipes
with other nodes, sending messages containing queries, update requests, query
results, etc. Wrapper manages connections to LDB and executes input database
manipulation operations. This is a module which is adjusted depending on the
underlying database. For instance, when LDB does not support nested queries,
then this is the responsibility of Wrapper to provide this support. Yet another
task of Wrapper is retrieval and maintenance of DBS.

The LDB rectangle stands for RDBMS (we use MySQL in coDB). It has
dashed border to mean that local database may be absent. Nevertheless DBS
must always be specified in order to allow a node to participate on the network.
In this situation a given node acts as a mediator for propagating of requests and
data, and all required database operations (as join and project) are executed
in Wrapper. The DBS rectangle has rounded corners because it represents a
repository, where DBS is stored. Arrows between UI and DBM as well as arrows
between JXTA Layer, Wrapper and DBM have the same graphical notation
because they represent procedure calls between different execution modules. The
arrow between JXTA Layer and the network has another notation because it
represents communication supported by JXTA. The arrows connecting Wrapper,
DBS and LDB have yet another notation because the communication they denote
is LDB dependent.

Nodes may import data from their acquaintances using definitions of coor-
dination rules. The head of a coordination rule is a conjunctive query which
refers to some local relations at a given node, and the body is another conjunc-
tive query (sharing some variables with the head) which refers to relations of
an acquaintance. In data integration literature this kind of mapping between
two schemas is called Global-Local-As-View, or GLAV [Lenzerini, 2002b]. The
body of a coordination rule may also contain a set of comparison predicates
which specify constraints over the domain of particular attributes of the ac-
quaintance’s relations. In order to import data from a node’s acquaintance using
a given coordination rule definition, the acquaintance computes the coordination
rule and sends the results back to that node.

A global update in a P2P database network is a process of updating nodes’
databases using all definitions of coordination rules they maintain. Note that
currently the coDB system only implements queries by first doing a global update
and then by answering the query locally at the node at which the query itself
was posed. A global update is started when some (dedicated) node sends to all
its acquaintances global update requests, containing definitions of appropriate
coordination rules. These acquaintances computes the queries, respond with the
query results, and propagate the global update to their acquaintances, and so on.
The global update request propagation is stopped at some node if that node has
no acquaintances to propagate the request, or if that node has already received
this request message. For the purpose of global update identification, all global

9



Fig. 2. Query interface

update request messages carry the same unique identifier generated at the node
which started the global update procedure. We use JXTA to generate global
updates identifiers.

5 The distributed algorithm

Herein we provide a concise description of the distributed update algorithm
[Franconi et al., 2004]. In order to understand how nodes process incoming query
results and when results propagation is complete, we introduce some additional
notions. We call coordination rules, incoming links at some node, if these rules
are used by some other (acquainted) nodes for importing data from that given
node. We call coordination rules, outgoing links at some node, if that node
uses these rules in order to import data from its acquaintances. We say that
an incoming link is dependent on an outgoing link, or that an outgoing link is
relevant for some incoming link, if the head of the outgoing link reference to a
relation, which is referenced by a body subgoal of the incoming link.

Query propagation is being done using extension of “diffusing computation”
approach [Lynch, 1996]. When node gets a query request, it answers it using
local data immediately, and it forwards it through all outgoing links. Each query
request is labelled by a sequence of IDs of nodes it passed through. A node does
not propagate a global update request, if the request ID is already known to
that node.

Query results coming from an acquaintance via some outgoing link (say, O)
can be seen as an additional, possibly empty set of tuples (say, T ) for the relations
(R) referenced by the head of this outgoing link. This, in turn, means that re-

10



computing of incoming links, dependent on O, may produce new results for the
acquainted nodes. For performance reasons, it is important to avoid duplication
in producing and propagating data. Therefore we first remove from T those
tuples which are already in R, and get the set of tuples T ′. If the conjunctive
query in the head of the rule contains existential variables, then fresh new marked
null values are used in tuples of T ′. Then, T ′ is added to R. Incoming links, which
are dependent on O, are computed by substituting R by T ′. The reason for that
is avoiding producing results which might have been already produced for these
incoming links. For each incoming link i we get query results Ri. Afterwards, we
delete from Ri those tuples which have been already sent to the incoming link,
and then send remaining tuples onto i. The receiver node processes these results
analogously and may evoke, in turn, further results’ propagation. Therefore,
incoming data can be seen as a result of transitive propagation of results via a
path of nodes, which we call update propagation path. At each node in the path,
we reconcile and store results sent to corresponding incoming links until global
update processing is complete for that node.

The global update processing is finished for some node (we say that after this
the node is in the state “closed”) if all outgoing links are in the state “closed”.
Initially, when a node starts a global update propagation or receives a global
update request message, it is in the state “open” and all its outgoing links (if
any) are in the state “open”. An acquaintance closes an incoming link (and, re-
spectively, outgoing link at some acquainted node) if all its outgoing links which
are relevant for this incoming link are in the state “closed”. A node closes its
outgoing link if a) it got query results for all the maximal dependency paths
passing through it; b) all results did not bring any new data to local database.
When all outgoing links of a node are in the state “closed”, then the node is also
in the state “closed”. The global update processing is complete, when all nodes
are in the state “closed”. It is worth saying that our algorithm processes global
update properly in the presence of cyclic dependencies and guarantees termi-
nation. Under a proper global update processing nodes update their databases
with all data that can be retrieved from their acquaintances, taking into account
transitive dependencies between incoming and outgoing links. After the termi-
nation of the algorithm each node contains a sound and complete set of data
(with respect to the semantics given in [Franconi et al., 2003]).

In addition to global updates handling and query answering at a node, c

oDB supports a topology discovery algorithm. When a node starts, it creates
pipes with those nodes, w.r.t. which it has coordination rules, or which have
coordination rules w.r.t. the given node. Several coordination rules w.r.t. a given
node can use one pipe to send requests and data. If some coordination rules are
dropped and a pipe is not assigned any coordination rule, then this pipe is also
closed.

11



Fig. 3. Peer discovery window

6 Experiments

Preliminary experiments were done to measure the scalability of our approach
with respect to the size and topology of the P2P network: we need to start-up all
the nodes, establish coordination rules between pairs of nodes, run a set of ex-
periments and, finally, collect statistical information. In order to facilitate these
tasks we provide some peer (called super-peer) with some additional function-
alities. In particular, that peer can read coordination rules for all peers from a
file and broadcast this file to all peers on the network. Once received this file,
each peer looks for relevant coordination rules and creates necessary pipe con-
nections. If a coordination rules file is received when a peer has already set up
coordination rules and pipes, then it drops “old” rules and pipes, and creates
new ones, where necessary. Thus, a super-peer can dynamically change the net-
work topology at runtime. Each node shows to its user the other nodes it has
pipes with, and w.r.t. which nodes it has incoming and outgoing links. It also
shows which other nodes (not acquaintances) it has discovered with the help of
JXTA (Figure 3).

For the purposes of collecting experimental data, each node has an additional
statistical module. This module accumulates various information about global
updates such as: execution time of an update, number of query result messages
received per coordination rule and the volume of the data in each message,
longest update propagation path, and so on. During the lifetime of a network,
each node accumulates this information. A super-peer has the possibility to
collect, at any given time, statistical information from all nodes on the network.
Then, the super-peer processes all incoming statistical messages, aggregates them
and creates a final statistical report.

12



0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Nodes

Time

�
�

�

�

��

�

�

�

	




�

�




��
��

��

��

��

�
�

�

�

�

�

�

� !"
#$
%&'(

)*

+,
-.

/0

12

34

56

chain

tree

clique

cycle

Fig. 4. Update time with respect to the size of the network.

For intermediate nodes, global update processing is done on the background,
transparently for the user. Each node maintains a global update processing re-
port and makes it available for the user on request. The report includes informa-
tion about starting and finishing times of an update, volume of data transferred,
which acquaintances have been queried and to which nodes query results have
been sent.

64 nodes participated to the preliminary experiments. The local relational
databases are based on DBLP data (http://dblp.uni-trier.de/xml) and con-
tained about 6400 records about publications (about 100 per node), organised
in 3 different relational schemas. The data distribution is such that there is no
intersection between initial data in neighbour nodes. Four types of topologies
have been considered: trees, chains, simple cycles, and cliques. The first two
topologies don’t contain cyclic rules, while the last two do contain cyclic rules.

By looking at the execution time with respect to the size of the network
(see Figure 4) we see, as expected, a linear dependency in the case of non-cyclic
networks. In the case of the simple cyclic structure, we see a quadratic increase
of evaluation time with respect to the size of the network, as expected—since
the =re is a unique cycle in the network. Experiments with a clique topology,

13



show an exponential blow-up in the evaluation time, due to the fact that the
cycles grow at least exponentially in the size of the network for this topological
structure.

7 Conclusions

In this paper we have given an overview of the coDB P2P DB system. Important
aspects of our system are: (1) it is semantically well-founded, (2) it allows for
cyclic GLAV coordination rules with built-in predicates, (3) supports batch up-
dates or queries on-the-fly, (4) correctness and termination of query answering
is guaranteed also in the case of runtime change in the topology of the network.

Our main focus for the near future will be to work on optimisations in the
various algorithms involved, to experiment with various topologies, to identify
special cases where the complexity becomes lower.

References

[Bernstein et al., 2002] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopou-
los, L. Serafini, and I. Zaihrayeu. Data management for peer-to-peer computing: A
vision. Workshop on the Web and Databases, WebDB, 2002.

[Calvanese et al., 2003] Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo, Mau-
rizio Lenzerini, and Riccardo Rosati. Semantic data integration in p2p systems. In
Proc. of the VLDB International Workshop On Databases, Information Systems and
Peer-to-Peer Computing (DBISP2P-2003), 2003.

[Calvanese et al., 2004] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
and Riccardo Rosati. Logical foundations of peer-to-peer data integration. In Proc. of
the 23rd ACM SIGACT SIGMOD SIGART Sym. on Principles of Database Systems
(PODS-2004), 2004. To appear.

[Daswani et al., 2003] Neil Daswani, Hector Garcia-Molina, and Beverly Yang. Open
problems in data-sharing peer-to-peer systems. In ICDT 2003, 2003.

[Fagin et al., 2003] Ronald Fagin, Phokion G. Kolaitis, R. J. Miller, and Lucian Popa.
Data exchange: Semantics and query answering. In Proceedings of the 9th Interna-
tional Conference on Database Theory, pages 207–224. Springer-Verlag, 2003.

[Franconi et al., 2003] Enrico Franconi, Gabriel Kuper, Andrei Lopatenko, and Lu-
ciano Serafini. A robust logical and computational characterisation of peer-to-peer
database systems. In Proc. of the VLDB International Workshop On Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P-2003), 2003.

[Franconi et al., 2004] Enrico Franconi, Gabriel Kuper, Andrei Lopatenko, and Ilya
Zaihraeu. A distributed algorithm for robust data sharing and updates in p2p
database networks. In Proc. of the EDBT International Workshop on Peer-to-Peer
Computing and Databases, 2004.

[Ghidini and Serafini, 1998] Chiara Ghidini and Luciano Serafini. Distributed first or-
der logics. In Franz Baader and Klaus Ulrich Schulz, editors, Frontiers of Combining
Systems 2, Berlin, 1998. Research Studies Press.

[Halevy et al., 2003] Alon Y. Halevy, Zachary G. Ives, Dan Suciu, and Igor Tatarinov.
Schema mediation in peer data management systems. In ICDE, 2003.

[Hellerstein, 2003] Joseph M. Hellerstein. Toward network data independence. SIG-
MOD Rec., 32(3):34–40, 2003.

14



[Holliday et al., 2003] JoAnne Holliday, Robert C. Steinke, Divyakant Agrawal, and
Amr El Abbadi. Epidemic algorithms for replicated databases. IEEE Trans. Knowl.
Data Eng., 15(5):1218–1238, 2003.

[Kementsietsidis et al., 2003] Anastasios Kementsietsidis, Marcelo Arenas, and Re-
nee J. Miller. Mapping data in peer-to-peer systems: Semantics and algorithmic
issues. In Proceedings of the SIGMOD International Conference on Management of
Data (SIGMOD’03), 2003.

[Lenzerini, 2002a] Maurizio Lenzerini. Data integration: a theoretical perspective.
In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 233–246. ACM Press, 2002.

[Lenzerini, 2002b] Maurizio Lenzerini. Data integration: A theoretical perspective.
In Lucian Popa, editor, Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 233–246, 2002.

[Lynch, 1996] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., 1996.

[Project JXTA, 2004] Project JXTA, 2004. See http://www.jxta.org.
[Serafini and Ghidini, 2000] Luciano Serafini and Chiara Ghidini. Using wrapper

agents to answer queries in distributed information systems. In Proceedings of the
First Biennial Int. Conf. on Advances in Information Systems (ADVIS-2000), 2000.

[Serafini et al., 2003] Luciano Serafini, Fausto Giunchiglia, John Mylopoulos, and
Philip A. Bernstein. Local relational model: A logical formalization of database
coordination. In CONTEXT 2003, pages 286–299, 2003.

[Wuu and Bernstein, 1984] G. T. Wuu and A. J. Bernstein. Efficient solutions to the
replicated log and dictionary problems. In Proc. of 3rd ACM Symp. Principles of
Distributed Computing, pages 233–242, 1984.

15


