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Chapter 4. Computational Algorithms of the FGM

Computational algorithms of the FGM are introduced in this 
Chapter in a simplified way. In contrast to the previous chapters of 
the book, certain mathematical background is required in this 
Chapter from a reader. However, complicated mathematical issues 
of the FGM are not considered here. The mathematical basis of the 
FGM, which is provided by results that belong to the fields of 
differential geometry, algebraic topology and the theory of 
functional spaces, is described in the book (Lotov et al., 1999b).

Let us repeat in short the mathematical statement of the method 
that has been given already in Section 1.5. We consider a finite 
number of decision variables x that belong to linear space Rn. The 
variety of feasible decision vectors is denoted by X. The criterion 
vectors y are elements of linear space Rm. Criterion vectors y are 
related to decision vectors x by a given mapping

mn RRf →: . 
Then, the variety of feasible criterion vectors Y is given by

( ){ }XxxfyRyY m ∈=∈= ,:  
If user is interested in decreasing the criterion values, the non-

dominated (efficient, Pareto-efficient, Pareto-optimal) frontier P(Y) 
of the variety Y that is defined as

( ) { }{ }.,:: ∅=≠′≤′∈′∈= yyyyYyYyYP
To visualize P(Y), we approximate and visualize the variety

Y* = Y + Rm
+ ,
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where mR+  is the non-negative cone of Rm. The variety Y* is called 
the EPH of the variety Y. Visualization of the variety Y* instead of 
the variety Y is based on the fact that

P(Y*)=P(Y).
The FGM/IDM technique consists in approximation of the 

variety Y* using such simple figures as polytopes, balls, boxes and 
cones, and in its further display using collections of its two-
criterion slices (cross-sections). In this Chapter, problems of 
approximating the varieties Y and Y* are considered. We start with 
approximating the variety Y and consider three basic cases listed 
below. Then, we turn to approximating the variety Y*.

In the first case, we assume that the set X is a convex polyhedral 
set and the mapping f is linear, i.e. the model is linear. Note that the 
set X may be not bounded in this case. Convolution of linear 
inequality systems can be proposed for constructing the variety f(X)
for linear models. This approach is described in Section 5.1.

In the second case, the variety f(X) is supposed to be convex and 
bounded. In this case, polytopes are used to approximate the variety 
f(X). The approximation methods are based on evaluation of the 
support function for the variety f(X). These methods do not depend 
upon the way of estimating support function, and so they can be 
applied in more general decision spaces. Methods of this kind are 
discussed in Section 5.2.

In the third case, the variety f(X) is not supposed to be convex. 
This feature may be attributed or to non-linear mapping f, or to non-
convex variety X, or to both. In this case it is supposed that the 
decision space Rn has a relatively small number of dimensions and 
the variety f(X) is bounded. Approximation methods are based on 
simulation of random feasible decisions. Collections of simple 
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figures such as balls and boxes are used as approximations of f(X). 
Methods of this kind are discussed in Section 5.3.

The methods for approximating the EPH of the variety f(X) are 
based on the ideas of the methods developed for the three above 
cases. The same convolution methods can be used in the first case. 
The sum of a polyhedral set and the non-negative cone is used in 
the second case, and collections of the sums of balls (boxes) and 
cones are used in the third case. The problems of constructing the 
EPH are discussed in Section 4.4.

In this chapter, we use the standard mathematical term “set” 
instead of “variety”.

4.1 Methods based on convolution of linear inequality 
systems

In this section, methods for convolution of linear inequality 
systems are introduced, and their application for constructing the 
set f(X) is described. As it was said earlier, it is supposed that the 
set X is a polyhedral set of Rn, the mapping f: Rn→Rm is linear, and 
the set f(X) is constructed by a polyhedral set.

It is supposed that the set X is specified by a linear inequality 
system. That is,

X = {x ∈ Rn: Hx ≤ h},                              (1.1)
where H is a given matrix and h is a given vector. The set X may be 
not bounded. A linear mapping f: Rn→Rm is specified by a matrix 
F, such that

f(x) = Fx. (1.2)
We construct the set

f(X) = { y ∈ Rm : y = Fx, Hx ≤ h }                (1.3)
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in the form

Q = { y ∈ Rm : Dy ≤ d}.
This idea was introduced in (Lotov, 1973 and 1975a). It is based 

on the opportunity to construct (orthogonal) projections of 
polyhedral sets.

Projections of polyhedral sets
DEFINITION. Let a set M ⊂ Rp ×××× Rq be specified. The set

Mw = { w ∈ Rq : ∃ v: (v,w) ∈ M }
is known as the (orthogonal) projection of the set M onto Rq.

Let us show how the set f(X) can be represented in the form of a 
projection. Consider the graph Z of the mapping f: Rn→Rm of the 
type (1.2) defined on the set (1.1), i.e.

Z = { (x,y) ∈ Rn × Rm : y = Fx, Hx ≤ h      (1.4)
Note that the set f(X) defined in compliance with (1.3) may be 

represented as

f(X) = { y ∈ Rm : ∃ x∈ Rn: y = Fx, Hx ≤ h }.
Therefore,

f(X) = { y ∈ Rm : ∃ x: (x,y) ∈ Z }.
That is, the set f (X) is a projection of the set Z onto Rm. Because 

the set Z is specified by equations of the system (1.1)-(1.2), the task 
of constructing the set f(X) reduces to constructing the projection of 
the polyhedral set Z onto Rm. Recall that this projection must be 
constructed in the form of the polyhedral set Q defined above.

Note that if m = n and the matrix F is of a complete rank, one 
can easily find the set f(X) by expressing the vector x in terms of y
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as x = F -1y and by inserting this expression into inequality system. 
Therefore,

f(X) = { y ∈ Rm : HF -1 y ≤ h}.
That is, the vector x may be excluded from (1.4) by an inversion 

of the matrix F.

However, when m < n, which is most often the case in applied 
problems, it is no longer possible to find the set f(X) in this simple 
way. The available equalities permit the elimination of only some 
of the coordinates of x from (1.4). In this case, the coordinates are 
expressed in terms of the remaining variables and can be inserted 
into the inequalities. To eliminate the remaining variables and, 
thus, to construct the desired projection of Z, one can use the 
methods proposed for the convolution of systems of linear 
inequalities by Fourier (1826). The convolution methods help to 
construct the projection Mw of a convex polyhedral set M ⊂ Rp ×××× Rq

in the form

Mw = { w ∈ Rq: Dw ≤ d }                          (1.5)
To be precise they help to find a matrix D and a vector d. of the 

description of Mw. Since the convolution methods are not widely 
known, we find it necessary to describe them briefly.

Convolution of linear inequality systems
It is supposed that the convex polyhedral set M is specified as

M = { (v,w) ∈ Rp ×××× Rq : Av + Bw ≤ c},                (1.6)
where A, B are specified matrices, and c is a specified vector. It is 
needed to find a matrix D and a vector d of the description of its 
projection Mw in the form (1.5).
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Fourier proposed the convolution method for eliminating the 
vector v from the finite system of linear inequalities (1.6) in a way 
that results in the constructing of the projection (1.5) of the solution 
set of (1.6). The method starts with the elimination of one 
coordinate of the vector v, i.e. with constructing the projection of 
the set M onto Rp-1 ×××× Rq. Constructing of the projection is based on 
eliminating the first component of the vector v. Then the process 
continues until all components of the vector v are eliminated. So, in 
the framework of the Fourier convolution method, every next 
projection is found from the previous one by the elimination of one 
coordinate of the vector v.

Eliminating of one component of the vector v is carried out by 
summation of pairs of the inequalities. The Fourier method 
resembles to some degree the method proposed by Gauss for 
solving systems of linear equations. However, the Fourier method 
is a bit more sophisticated.

The Fourier method for p = 1

In the case p = 1, the system (1.6) may be recast as

ai v + <bi , w> ≤ ci , i = 1, 2, ... , N,                (1.7)
where ai are numbers and bi are vectors. We break up all 
inequalities into three groups, Π+, Π- and Π0, in correspondence to 
the sign of the coefficient by the variable v. The system describing 
the projection includes

� all inequalities from (1.7), which have zero coefficients at the 
variable v (i.e. the inequalities that belong to Π0),

� all possible linear combinations of pairs of inequalities with 
opposite signs of the coefficients, i.e. all inequalities

<aj bi - ai bj , w> ≤ aj ci - ai cj , where i∈ Π- , j∈ Π+.
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When excluding a greater number of variables by the Fourier 
method, the procedure remains the same: on a current elimination
step, the system, which is a result of elimination of the previous 
coordinate, is taken as the starting system.

Convolution of particular systems shows that number of 
inequalities resulting from the consecutive elimination of variables 
by the Fourier method grows extremely fast. For this reason, the 
array of their coefficients soon overfills the memory of any existing 
computer. Fortunately, there is an opportunity to improve the 
situation considerably. It is based on the fact that many of the 
resultant inequalities are redundant, i.e. they follow from other 
inequalities of the system. Therefore, their elimination from the 
system does not affect the solution set. The ability to identify and 
eliminate the redundant inequalities is crucial for successful 
application of the convolution methods.

To show how a part of the redundant inequalities can be 
eliminated by convolution methods, we use the results of the theory 
of linear inequalities, in particular, the Farkas lemma and the Ky 
Fan lemma.

Farkas lemma and Ky Fan lemma
Farkas lemma is a fundamental result of the theory of linear 

inequalities. Among other things, it provides the basis for the 
duality theory of linear programming. Farkas lemma has two 
formulations: a geometrical formulation (see, for example, 
Goldman and Tucker, 1956) and an algebraic one (Gale, 1960). 
First, we introduce several concepts needed to formulate Farkas 
lemma.

DEFINITIONS. By a polyhedral cone is understood the set

K = {b: b = Aλ, λ ≥ 0},
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where A is a matrix composed of an arbitrary collection of vectors 
{a1, a2,..., aM}. By the conjugate cone of a cone K is understood the 
set

K+ = {u: <u, b> ≥ 0, b ∈ K}.
In the case of a polyhedral cone K specified by a matrix A, its 

conjugate takes the form

K+ = {u: uA ≥ 0}.
In turn, the conjugate of the cone K+ may be defined as

K++ = {w: <u, w> ≥ 0, u ∈ K+}.
Farkas lemma (the geometrical formulation). For a polyhedral 

cone K, it holds K++=K.

Farkas lemma (the algebraic formulation). Let there be given a 
matrix A. For a vector b, there exists a vector λ ≥ 0, such as b = Aλ,
if and only if for any solution of the system uA ≥ 0 it holds < u, b >
≥ 0.

An obvious corollary of Farkas lemma, convenient for an 
analysis of the convolution methods, is the Ky Fan lemma (Ky Fan, 
1956). By the way, A.D.Aleksandrov (1950) seems to be the first to 
prove and use the lemma.

Ky Fan lemma. System Av ≤ b has a solution if and only if for 
any solution of the system

uA = 0, u ≥ 0                                       (1.8)
it holds

<u, b> ≥ 0.
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Let U designate a finite matrix whose rows are vectors, which 
jointly generate a polyhedral solution cone for the system (1.8). 
Then, the lemma may be restated as follows.

Ky Fan lemma (an equivalent formulation). Let U be a finite 
matrix whose rows are the vectors that generate the solution cone 
for the system (1.8). The system Av ≤ b is compatible if and only if 
Ub ≥ 0.

The Ky Fan lemma can be used to describe the projection Mw of 
the polyhedral set (1.6) in the following way. Consider the system

Av ≤ b, where b = c – Bw.
By the definition of a projection and according to the Ky Fan 
lemma, it holds w ∈ Mw if and only if

U(c – Bw) ≥ 0.
Therefore,

Mw = { w ∈ Rq: UBw ≤ Uc }.                        (1.9)
In accordance with (1.8), the elements of the matrix U are 

nonnegative. Therefore, the elements of the matrix D and of the 
vector d can be derived upon multiplying by a positive number and 
summing up the rows of the original inequality system (1.6). This is 
what happens in the Fourier method.

Note that there exists an infinite number of matrices U that can 
generate the solution cone for (1.8). However, matrices with a 
minimal number of rows do exist. Such matrices, denoted by Uf, 
are called the fundamental matrices of solutions for (1.8). Examples 
show that, for p > 1, the Fourier method does not usually result in 
such system (1.9) that can be related to a fundamental matrix of 
solutions, that is, such that
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D = Df = UfB, d = df = Ufc.
Important ideas that can be used for constructing the matrix Uf

were developed by (Motzkin et al., 1953), however, the ideas were 
suggested in a rather vague form and without a proof. Burger 
(1956) reformulated the ideas and supplied the necessary proof. 
Using these ideas, Chernikov (1965a, 1965b, 1968) invented 
several methods for the convolution of inequality systems, which 
make it possible to find Df and df. The gist of these methods is as 
follows.

Chernikov methods
The Chernikov methods for convolution of linear inequality 

systems are based on the result provided in (Chernikov, 1968, 
Theorem 5.1). Here, we describe the same ideas in a somewhat 
simplified form, which relies on the generally known concept of the 
affine dependence of vectors.

DEFINITION. The vectors ai, i = 1, 2, ..., r, are called affine-
dependent if there exists a non-zero vector λ ∈ Rr such that
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To apply this definition for the description of the Chernikov 
convolution methods, we need the notion of extreme vectors of a 
cone. An extreme vector of a cone is one that cannot be represented 
as a linear combination with positive coefficients of two non-
collinear vectors from the cone. Let us restrict with the pointed 
cones, i.e. the cones that do not contain subspaces of nonzero 
dimension. It is known that the minimal subset of vectors, which 
generate a pointed cone, coincides with the subset of its extreme 
vectors. The solution cone for (1.8) is a pointed cone because it 
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belongs to the non-negative orthant. So, it is desirable to find the 
subset of its extreme vectors of the solution cone for (1.8).

The necessarily and sufficient condition for a solution of (1.8) 
to be an extreme vector of the solution cone is given by the 
following lemma formulated and proved by O.L. Chenykh.

Chernykh lemma. The vector u is an extreme vector of the 
solution cone for the system (1.8) if and only if the set of rows of 
the matrix A, corresponding to the positive coordinates of u, is 
affine-independent.

The proof of the lemma can be found in (Lotov et al., 1999b). 
The lemma shows that the extreme vectors of the solution cone for 
the system (1.8) can be identified by testing for affine independence 
those rows of the matrix A, which enter into a linear combination 
with positive coefficients.

The problem of computing the matrix Df and the vector df using 
the convolution methods can be solved in the following way. Note 
that any inequality of the system (1.6) can be associated with its 
number. Let us denote by Ii the set of inequalities of the original 
system (1.6) that have entered into a linear combination upon the 
formation of the i-th inequality of the system (1.5). This set of 
numbers is the index of the i-th inequality of the system (1.5).

The following rule for identifying redundant inequalities in the 
system (1.5) can be used: if

Ii ⊂ Ij ,                                    (1.10)
then the rows of the matrix A with numbers from Ij are affine-
dependent. Therefore, the j-th inequality is redundant.

The rule (1.10) can be derived from the results given in the 
book (Chernikov, 1968). On the other hand, it follows straight 
away from the Chernykh lemma. The rule (1.10) helps to derive a 
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new method based on the Fourier convolution. The new method 
consists in testing the rule (1.10) at any step of elimination of a 
component of vector v. The new method is known as the 
fundamental convolution method (Chernikov, 1968). We do not 
describe the method in details. Instead, we consider another new 
method that is used in our software systems for constructing the 
projections of polyhedral sets. The method is proposed by 
Chernikov, too, and is named as the reduced fundamental 
convolution method (Chernikov, 1968). The method is as follows.

It is easy to show that a matrix of p columns cannot contain 
more than (p+1) affine independent rows. Therefore, the number of 
elements in the index of the j-th inequality denoted by |Ij| can be 
used for a preliminary testing of its redundancy: if

| Ij| > p + 1,
then the j-th inequality is redundant. Hence, the condition (1.10), 
which requires a comparison of the indices of pairs of inequalities, 
should preferably be preceded by testing the number of elements in 
its index. This is the main idea of the reduced fundamental 
convolution method.

Reduced fundamental convolution method

An elimination step of the reduced fundamental convolution 
method can be described as follows. Suppose we have eliminated 
the variables v from the system (1.6) and derived a system of the 
type (1.5). In doing so, for each i-th inequality of the system (1.5), 
we retain its index Ii. Suppose that the further elimination of one 
more variable from the system (1.5) is required. As with the Fourier 
method, we break up all inequalities into three groups, Π+, Π- and 
Π0. Now, we include all inequalities from Π0 into the new system 
(index is not changed). We also include into the new system the 
linear combinations of pairs of inequalities, one of which is taken 
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from Π+, and the other, from Π-, but, in contrast to the Fourier 
method, we limit ourselves to those combinations whose indices 
satisfy a condition defined below. Let us consider two inequalities i 
∈ Π+ and j ∈ Π- from the system (1.5):
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with the index (Ii ∪ Ij ) into the new system if and only if

1. | Ii ∪ Ij | ≤ p + 2;

2. does not exist a k-th inequality of the system (1.5), such that 
Ik ⊆ Ii ∪ Ij.

This completes the step of the method. Note that the first 
condition is given in a simplified form; actually, it is possible to 
make it more effective (Chernikov, 1968).

Discussion of convolution methods
Note that, although the number of resultant inequalities is much 

smaller in Chernikov methods than it is in the Fourier method, 
elimination of variables may result in an exponential growth of the 
number of the inequalities. This fact poses difficulties in using the 
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convolution methods in real-life problems, even with a relatively 
small number of dimensions.

Let us consider a typical example. In a practical decision 
problem (not described here) it was necessary to eliminate seven 
variables from a system that contained 36 original inequalities. Two 
alternative variants of input data were available, which differed 
solely in several coefficients of the matrix A. With the first data set, 
the number of inequalities exceeded 500 after the elimination of the 
third variable, and the computation was terminated. With the 
second data set, it was possible to eliminate six variables, and the 
number of the inequalities did not exceed 500 until the seventh 
variable was eliminated. This example shows that the efficiency of 
the convolution methods strongly depends on elements of the 
matrix A. So it seems to be reasonable to change the elements of 
the matrix a bit to decrease the number of inequalities. The 
influence of modification of elements of the matrix A on the 
solution set of the system method has been examined in (Lotov, 
1984 and 1995). The same technique was used for estimation of the 
influence of rounding errors on the stability of the Fourier 
convolution (Lotov, 1986).

The experience gained in using the convolution methods in real-
life problems shows that these methods can guarantee the final 
result only for systems of a very small dimension (say, with 5 
variables and 10 inequalities). At the same time, there are practical 
tasks where the convolution methods are efficient enough because 
the elimination of variables results in minor growth of the number 
of inequalities. The order in which variables are eliminated also has 
a strong influence on the progress of convolution. This implies that 
the desired result can sometimes be obtained through a change in 
the elimination order.
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Let us stress that application of the reduced fundamental 
convolution method solves the problem of the redundant 
inequalities only partially. Even the minimal matrix Uf will usually 
generate redundant inequalities in the description of the set Mw. 
Indeed, the matrix Uf describes the edges of the solution cone for 
(1.8). This cone depends on the matrix A only. The matrix Uf has to 
include rows that help to describe the projection of the set M for 
any B and c. Therefore a great number of redundant constraints do 
arise in the process of constructing a projection for specific B and c
by the method of reduced fundamental convolution.

To extend the applicability of the convolution methods, it has 
proved necessary to invoke methods for the identification of 
redundant inequalities in linear systems. A mathematical statement 
of the problem is as follows. In a finite system of linear inequalities

<ai, x> ≤ bi, i = 1, 2, ... , N,
where ai ∈ Rp are the given coefficient vectors, and bi are the given 
numbers, it is necessary to identify a subsystem that has the same 
solution set, but that does not contain redundant inequalities. 
Problem of eliminating the redundant inequalities in linear systems 
has been known for a long time (Karwan et al., 1983). Most 
methods are based either on iterations of the prime or dual 
problems of linear programming or on some heuristic techniques. 
We have also developed such methods and used them to construct 
sets of the type (1.3) in some practical tasks. We have found that 
there is no way of finding universal methods for elimination of the 
redundant constraints that are efficient in most problems. Some 
methods will identify practically all redundant inequalities, but they 
require an enormous amount of time to do it; others will operate 
quickly, but they will not even suggest how many redundant 
inequalities still remain. To make the convolution methods more 
effective, along with the redundant inequalities one can exclude the 
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inequalities that are “quasi-redundant”. To be precise, an inequality 
is quasi-redundant, if its exclusion from the inequality system 
results in a minor change of its solution set. In more detail, these 
matters are considered in (Bushenkov and Lotov, 1980 and 1982b).

Speaking about possible application of the convolution methods 
for constructing the set f(x), one can state that each problem calls 
for separate experimenting using various orders for the elimination 
of variables, as well as various methods for the elimination of 
redundant and quasi-redundant inequalities. Therefore application 
of convolution methods cannot be completely automatic, and the 
need arises for intervention by a human operator. For convenience, 
a package of programs called POTENTIAL was developed 
(Bushenkov and Lotov, 1984) in the beginning of 80s. It offered a 
way to solve several applied problems. Using the POTENTIAL 
package, the following record result was obtained. The model was 
studied that consisted of three blocks, each with 12 decision 
variables and 18 equalities and inequalities. The coordinating 
problem had four additional variables and 17 global constraints. 
The set f(X) for seven criteria was constructed, it included 180 
inequalities.

A major advantage of the convolution methods is the 
opportunity to construct the sets f(X) for the systems with large 
number of criteria. Another advantage consists in the opportunity to 
construct the sets f(X) for non-bounded sets X. However, it is clear 
that the convolution methods have multiple disadvantages. First of 
all, it is obvious that these methods are inapplicable to real-life 
models involving hundreds of variables. The most important 
disadvantage of the convolution methods consists in the following: 
in cases where the convolution process cannot be carried out to its 
completion, the effort fails to yield even an approximate result.
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Note that the elimination of almost redundant inequalities from 
a system describing a projection leads to a fundamentally new 
situation; the task of constructing the precise projection is replaced 
by the task of approximating the projection. It is logical to ask why, 
if one finally ends up with an approximation, one should strive for 
the precise projection rather than construct an approximation from 
the very beginning in an optimal way (e.g., by seeking an 
approximating polytope, which has minimal number of faces for a 
specified accuracy). Such an approach is used in the Projection-
Estimate Refinement (PER) method proposed in (Bushenkov, 1981 
and 1985). The PER method helped to overcome the principal 
drawback of the convolution methods, especially the lack of an 
approximate estimate of the projection in cases where it is 
impossible to carry the task to completion.

Projection-estimate refinement (PER) method
In this method, projection (1.5) of the polytope (1.6) is 

approximated by a sequence of polytopes P0, P1, ... , Pk, ..., such 
that Pk tends to Mw ⊂ Rp in the Hausdorff metrics. The sequence of 
polytopes is constructed in iterative way, beginning from P°, upon 
solving auxiliary convolution problems.

Prior to the (k+1)-th iteration of the PER method, a polytope Pk

must be specified, such that

(a) Pk ⊂ Mw;

(b) vertices of Pk belong to the frontier of Mw;

(c) Pk is specified in two forms simultaneously, namely:

(c1) as a convex hull of vertices {w(1), w(2), ... , w(r) };

(c2) as a solution set of the system of linear inequalities

Pk = {w ∈ Rq: <cj,w> ≤ dj, j = 1, 2, ... , N},     (1.11)
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where cj are vectors from Rq, and dj are numbers.

Transition to Pk+1 consists of the following steps. For faces of 
Pk , which are specified by vectors cj and numbers dj, the following 
N linear programs are solved:

<cj, w> → max while (v,w) ∈ M, j = 1, 2, ..., N.        (1.12)
From the solutions (v(j), w(j)) of (1.12), a solution with maximal 

distance of the point w(j*) from Pk is selected. Then we put

Pk+1 = conv { w(j*), Pk },
and construct the polytope Pk+1 in the form (1.11). This completes 
the (k+1)-th iteration of the method.

The problem of constructing the polytope Pk+1 in the form 
(1.11) deserves special discussion. The following method for the 
solution of the problem was proposed in (Bushenkov, 1981 and 
1985).

Bushenkov method for constructing the convex hull of a 
polytope and a point

The problem consists in constructing the convex hull of a 
polytope given as the solution set of the linear inequality system 
(1.11) and of a point w*. The convex hull must be constructed in 
the same form of the solution set of a linear inequality system. So, a 
linear inequality system must be constructed, the solution set of 
which coincides with the above convex hull. The method has the 
following steps.

(1) Inequalities of the system (1.11) violated by the point w* are 
identified;

(2) Vertices w(i), i = 1, 2, ... ,L, of the polytope are identified, which 
belong to the faces related to the violated inequalities;
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(3) The cone K ⊂ Rq, specified by edges w(i) – w*, i = 1, 2, ... ,L, is 
constructed in the form of the solution set for the system of linear 
inequalities (which is equivalent to constructing the edges of the 
conjugate cone K+);

(4) In the inequality system (1.11), the inequalities, which are 
violated by the point w*, are eliminated; new inequalities, which are 
specified by the edges of K+ and the point w*, are included.

To construct a conjugate cone, the method uses the above 
methods for the convolution of systems of linear inequalities. Note 
that the conjugate cone is constructed in Rm, but not in the original 
space Rn. In the FGM, aimed at decision support via visualization 
of the set f(X), the number of criteria m is relatively small; so, we 
can use the PER method for approximating the set f(X) for 
problems with a large number of decision variables. Using our 
experience in the convolution of systems of linear inequalities and 
the appropriate computer software, it is possible to use the PER 
method as a powerful tool for approximating the projections of 
polyhedral sets.

On the other hand, it is clear that the basic ideas of the PER 
method can be used for invention of methods for solution of a more 
general problem – the problem of iterative approximation of 
bounded convex sets by polytopes. The only requirement that exists 
is that one must be able to solve optimization problems with linear 
criteria for the approximated body. These methods could be used 
for approximation the set f(X) in the convex case, too. A class of 
methods for polyhedral approximation of convex bounded bodies is 
described in Section 5.2. These methods use the following ideas of 
the PER method:

(a) approximation polytopes are constructed iteratively;
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(b) transition from Pk to Pk+1 consists of two independent steps. 
The first step is related to optimization of (1.12) type, and the 
second one is concerned with the construction of conv {Pk, w*} in 
the form of (1.11) using the convolution methods.

4.2. Methods for polyhedral approximation based on 
evaluation of support function

In this section, the set Y is assumed to be a compact convex 
body, for which the support function can be evaluated. We describe 
here the iterative methods for approximation of convex compact 
bodies by sequences of polytopes that can provide approximation 
with any given accuracy. These methods are now the main tool for 
approximating the convex varieties of feasible goal vectors in the 
framework of FGM.

The problem of polyhedral approximation of convex compact 
bodies is a classic problem of applied mathematics (Gruber and 
Wills, 1993). Let Rm be Euclidean space with the distance d. By 
compact bodies we understand closed confined sets with non-empty 
interior. Let us consider a convex compact body C from Rm. 
Methods for polyhedral approximation of the body C are based on 
evaluation of its support function for directions u, i.e. on co mputing 
the values of the function

gC (u) = max {<u, y>: y ∈ C},
for directions u that belong to the unit sphere of directions

S = {u ∈ Rm: <u, u> = 1}.
It is assumed that we are able to compute the values of the 

support function for any direction u ∈ S. In the framework of the 
FGM, we approximate the set Y=f(X), for which
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gY (u) = max {<u, y>: y=f(x), x∈ X}.
Various optimization techniques do exist that can solve this 

problem for particular sets X and mappings f, especially in the case 
of the convex set f(X). In the case of linear models, various linear 
programming methods can be used for computation of the values of 
the support function for directions u.

Iterative approximation of convex compact bodies by polytopes 
is often based on computing the values of the support function for a 
given finite system of directions (so called a priori grid)

{u1, u2, …, uL}.
It is clear that the above grid neglects the actual shape of the 

body being approximated. For this reason, the approach based on 
the a priori grids is not the best one. G.Sonnewend (1983) proved 
that the methods using grids of this kind are not optimal. They 
require too many evaluations of the support function; polytopes 
constructed by them have too many vertices and faces.

In this section we describe optimal methods for approximating 
the compact convex bodies by polytopes. The optimality of the 
methods is related to their ability to adapt to the form of the 
approximated body C. The adaptive methods compute the support 
function for the directions identified in the approximation process. 
To the extent of our knowledge, the first adaptive method (NISE) 
was proposed by J.L.Cohon (1978). The method was used for 
approximating a two-dimensional convex body (actually, its non-
dominated frontier).

Iterative methods of polyhedral approximation of convex bodies
By an iterative method for the polyhedral approximation of a 

body C we mean a method for constructing an infinite sequence of 
polytopes
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P0, P1, ... , Pk, .…
We restrict with the sequences of polytopes, for which the 

number of vertices of polytopes P0, P1, ... , Pk, … is increased by 
one on an iteration. Every next polytope is constructed on the basis 
of the previous one using one or several procedures of computing 
the support function for the set C.

We consider such sequences of polytopes Pk that approximate 
the body C, i.e.

,0),(lim =
∞→

CPk
k

δ

where δ (⋅,⋅) is the Hausdorff metrics, i.e.

δ(C1, C2) = max { sup {d(x, C2): x∈ C1 }, sup {d(x, C1): x∈ C2 } }.
The ability of polytope sequences to approximate convex 

compact bodies to any degree of accuracy is an important 
advantage in comparison with the approximation by a single body 
of a specific form such as a simplex, a parallelotope, or an 
ellipsoid. However, a high price has to be paid for this advantage. 
As both practice and theory show, the complexity of description of 
an approximating polytope rapidly increases if accuracy of 
approximation and dimension of the body increase. Nevertheless, 
we need to construct polytopes that approximate the body very 
accurate, since the shape of the frontier of the approximated body is 
of interest in the framework of the FGM (and not just the domain 
where this body would be located). Therefore, we develop methods 
that have an optimal complexity of approximating polytopes and 
are optimal in respect to the number of computing the support 
function. Such methods are described in this section.

We consider convex polytopes, whose vertices belong to the 
boundary ∂C of the approximated body C. Such class of polytopes 
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is denoted by P(C). Another class of polytopes denoted as Q(C) is 
provided by convex polytopes with faces touching ∂C. Methods for 
iterative constructing of sequences of polytopes, which are 
described here, are based on the so called incremental scheme.

Incremental Scheme. Let Pk ∈ P(C). The (k + 1)-th iteration 
involves two steps:

Step 1. Selecting the point y* ∈ ∂C;

Step 2. Constructing Pk = conv { y*, Pk } in the required form.

Note that the above PER method embodies the incremental 
scheme. Particular methods based on the incremental scheme can 
be characterized by algorithms of solving the problems that arise on 
the two above steps. Apart from the incremental schemes, other 
classes of iterative schemes may be used, such as the cutting 
schemes. We do not consider them here (see Kamenev, 1992).

Let us consider a method based on the incremental scheme. Let 
the initial polytope P0 belong to P(C). Then the polytopes Pk belong 
to P(C) for any k. Denoting the number of vertices for a polytope P
∈ P(C) by N(P), we obtain

N(Pk) = N(P0) + k.

Adaptive methods
Among the methods based on the incremental schemes, one can 

distinguish adaptive methods. In the framework of the adaptive 
methods, the choice of the point y* ∈ ∂C is based on information 
about the shape of the polytope Pk. Actually, the choice of y* ∈ ∂C
is adapted to the shape of the body C to the same extent as Pk

approximates C. The first adaptive iterative method for 
approximation of multiple-dimensional compact convex bodies by 
polytopes, the method of Estimation Refinement (The ER method), 
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was proposed by Bushenkov and Lotov (1982b) and modified by 
Chernykh in 1986 (see Chernykh, 1988). The method applies the 
incremental scheme and the ideas of the PER method for the 
polyhedral approximation of the compact convex bodies.

Let us consider a polytope P ∈ P(C). Let U(P) denote the finite 
list of outer normals to its facets. Evidently, U(P) is given in the 
case when the polytope P is given in the form of the solution set of 
a linear inequality system.

Method of Estimate Refinement (ER method)
Prior to the (k + 1)-th iteration of the method, the polytope 

Pk ∈ P(C) has to be constructed in the form of the solution set of a 
linear inequality system.

Step 1. Find u* ∈ U(Pk) which solves

};)(:))()((max{ k
PC PUuugug k ∈− (2.1)

select a point y*∈ ∂C such that

<u*, y*> = gC (u* ).
Step 2. Find U(Pk+1) for

Pk+1= conv {y*, Pk }
upon constructing a linear inequality system, which solution set 
coincides with Pk+1 = conv {y*, Pk }.

Surely, the initial polytope P0 ∈ P(C) must be specified to start 
the method. Its construction is discussed in (Chernykh, 1991 and 
1992), and we do not dwell on the matter here.

So, in the framework of the ER method, as in the case of the 
PER method, the computationally complex problem of constructing 
the convex hull of the polytope Pk and the point y*∈ ∂C should be 



172

solved. However, the ER method applies a different method for 
constructing the convex hull of a polytope and a point, which is 
discussed at the end of the Section.

The ER method, as the PER method, has the following 
important property: the solution of the problem (2.1) provides a 
rough estimate of the distance δ(Pk, C). Indeed, the polytope

kP̂  = {y ∈ Rm: <u, y> ≤ gC(u), u ∈ U(Pk) }
contains the body C. Due to it, we have the internal and external 
estimates for the approximated body C at any iteration

.ˆ kk PCP ⊂⊂  

Therefore, it is possible to evaluate the distance δ(Pk,C) 
visually, by depicting two-dimensional slices of the polytopes Pk

and kP̂ . This property of the method can be used in real-life 
problems for human decision to stop the approximation procedure.

Note that the external polytope kP̂ plays a fairly passive role in 
the ER method. It only helps to evaluate the distance δ(Pk,C), but 
does not play any role at the iterations of the method. In contrast, 
external polytopes play an active role in a different iterative method 
for polyhedral approximating the multiple-dimensional compact 
convex bodies, the method of Mutually Converging Polytopes 
(MCP) proposed in (Kamenev, 1986).

Method of Mutually Converging Polytopes (MCP)
Prior to the (k + 1)-th iteration of the method, we should have 

two polytopes constructed: the polytope Pk ∈ P(C) and the polytope 
Qk ∈ Q(C), both in the form of the solution set of linear inequality 
systems. Then, the iteration consists of two steps:
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Step 1. Find u* ∈ U(Pk) which solves

})(:))()((max{ k
PQ PUuugug kk ∈− .

Compute a point y*∈ C such that

<u*, y*> = gC (u* ).
Step 2. (a) Find U(Pk+1) for

Pk+1= conv {y*, Pk }
upon constructing a linear inequality system, which solution set 
coincides with Pk+1 = conv {y*, Pk };

         (b) Let

Qk+1 = Qk ∩ {y ∈ Rm: < u*, y> ≤ gC(u*) }.
The vertices of the original polytope P0∈P(C) are supposed to 

be located on the faces of the original polytope Q0∈Q(C). For this 
reason, the resultant polytopes also possess this property.

As one can see, the MCP method is based on the incremental 
scheme. However, due to the active role of the external polytope 
Qk, the MCP method requires only one evaluating the support 
function for the body C per iteration. In this sense, it differs from 
the ER method, which is related to a fairly large number of such 
evaluations. The direction u*, for which the support function of the 
body C is computed, is selected on the basis of the polytope Qk. 
Due to this, the direction can be found faster than in the case of the 
ER method. However, it can result in an inefficient selecting of the 
new vertex. Experiments support the anxiety. To avoid the 
problem, a new method named the Modified MCP (MMCP) 
method was proposed (Bourmistrova, 2000). The modification 
looks fairly simple – one has to introduce a threshold , which 
values are between one and zero, and to check the inequality
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before Step 2 of the method is started. The condition (2.2) means 
that the potential vertex y*∈ C is sufficiently distant from the 
polytope Pk . If the condition (2.2) is satisfied, the new vertex y* is 
included into the polytope Pk and the related inequality < u*, y> ≤
gC(u*) is included into the description of the polytope Qk.. In the 
opposite case, the vertex y* is not included into the polytope Pk, but 
the related inequality < u*, y> ≤ gC(u*) is still included into the 
description of the polytope Qk.. Then, process returns to Step 1. The 
iteration is completed only after such a direction u* is found that 
satisfies (2.2). So, in contrast to the MCP method, the support 
function of the body C can be evaluated several times at an iteration 
of the MMCP method, and several new inequalities may be 
included into the description of the polytope Qk..

Note that for β = 0 the modified MCP method coincides with 
the MCP method, and its polytope sequence coincides with the 
polytope sequence constructed by the ER method in the case of β = 
1. However, the ER method does not require constructing of the 
sequence of the polytopes Qk. and searching for the best direction 
u* for the polytope Qk.. By the way, the last problem is not so 
simple as it looks at the first glance. Though the polytopes of Qk.

type belong to the space of the small dimension m, they are 
described by linear inequality systems that usually have only a 
small number of zeros among their coefficients. For this reason, 
solution of optimization problems at Step 1 of the modified MCP 
method may require computational time comparable with 
computational time of Step 1 in the ER method.

The above small modification of the MCP method results in 
new important features, which will be discussed later, after we 
introduce several basic concepts of the theory of adaptive methods 
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for polyhedral approximation of multiple-dimensional compact 
convex bodies.

Theory of the incremental scheme
To evaluate the quality of iterative methods, a ‘reference’ 

sequence of polytopes must be considered that gives the best 
approximation of the convex compact body C. It is known (Gruber, 
1983) that among the polytopes with a given number of vertices N
there always exists a polytope PN ∈P(C) with the minimum of 
distance δ(C, PN). The polytope PN is denoted as the polytope of
best approximation (PBA). It is known that δ(C, PN)→0 while 
N→∞. In the case the body C has a sufficiently smooth boundary, 
there exist positive constants kC and KC such that

kC / N 2/(m-1) ≤ δ(C, PN) ≤ KC / N 2/(m-1) (2.3)
where m is the dimension of the space (Bronshtein and Ivanov, 
1975, Schneider and Weacker, 1981, and Gruber and Kendrov, 
1982). So, the distance of the PBA from such a body decreases with 
the order of convergence 2/(m-1). The PBA can be found for 
extremely simple bodies only, but their sequence can be used as the 
‘reference’ sequence of approximating polytopes in a general case. 
However, it is important to remember that the PBA-based 
‘reference’ sequence of polytopes provides an ideal that is not 
feasible in reality since vertices of PN are not related to vertices of 
PN-1, and so one can not even imagine an iterative procedure that 
constructs the sequence of PBA.

So, the sequences of polytopes generated by approximation 
methods can be compared with the sequence of PBA. Since the 
polytopes generated by an iterative method cannot approximate the 
body C better than PBA, the difference between them is estimated. 
In (Kamenev, 1992 and 1993) the Hausdorff class of methods for 
polyhedral approximating of compact convex bodies is introduced. 
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Methods from this class construct polytopes that are close to the 
sequence of PBA. We restrict the definition of the class to the 
methods based on the incremental scheme. An incremental scheme-
based method is denoted as a Hausdorff method with a constant γ > 
0 for a body C, if it results in a sequence of polytopes {Pk}k = 0, 1, ...
for which it holds

δ(Pk, Pk+1) ≥ γδ(Pk, C), k = 0, 1, ...
It was shown that, for any convex compact body C, a Hausdorff 

method results in a sequences of polytopes that approximates the 
body. Then, it was proven that, for convex compact bodies with a 
sufficiently smooth boundary, the distance δ(C, Pk) has the same 
order of convergence 2/(m-1) asymptotically, i.e. for sufficiently 
large numbers Nk of vertices of the polytope Pk it holds

δ(C, Pk) ~ 1 / Nk
 2/(m-1).

When compared with (2.3), this estimate shows that for such 
bodies the sequence of polytopes generated by a Hausdorff method 
has the same order of convergence 2/(m-1) as the sequence of PBA! 
This statement means that the Hausdorff methods are 
asymptotically optimal with respect to the order of the number of 
vertices. Since the number of vertices of the polytope Pk is related 
to the number of iterations, the Hausdorff methods are 
asymptotically optimal with respect to the order of the number of 
iterations.

Since the Hausdorff methods proved to be optimal with respect 
to the order of the number of vertices, it is interesting to know 
about the ratio of distances δ(C, Pk) and δ(C, 

kNP ). Results in this 
field were obtained in (Kamenev, 1993). We describe them in short 
here. Let us consider a sequence of polytopes F = {Pk}k = 0, 1, ..., 
which approximates a compact convex body C. The value
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is denoted as the asymptotic efficiency of the method that was used 
for generating the sequence F. Evidently, that the value η(F) = 1
can be achieved by the sequence of PBA. For the sequence of 
polytopes that is not optimal, it holds η(F) = 0. For the optimal 
sequence of polytopes, it holds

0 < η(F) < 1.
In (Kamenev and Efremov, 2002) it is shown that for the 

sequence of polytopes, which are produced by a Hausdorff method 
for convex compact bodies with a sufficiently smooth boundary, it 
holds

( )
4
11

)(
2

γ
η

−−
≥F . 

Other properties of the ER and MCP methods
The first example of a Hausdorff method is provided by the ER 

method. In (Kamenev, 1994) is proved that, for any compact 
convex body with a sufficiently smooth boundary, the ER method 
is a Hausdorff method with some constant γ and that the value of γ
is asymptotically close to 1. Due to this, we can assert that, for 
bodies with a sufficiently smooth boundary, the ER method has the 
optimal convergence rate and that for its asymptotic efficiency it 
holds

.4/1≥η

Though the MCP method itself does not belong to the 
Hausdorff class, it has optimal convergence order for the bodies 
with a sufficiently smooth boundary (Kamenev, 1996). It means 
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that the MCP method is asymptotically optimal with respect to the 
order of the number of vertices. Because of this fact and the fact 
that only one evaluation of the support function is needed on an 
iteration of the MCP method, it has the asymptotically optimal 
number of evaluations of the support function.

The modified MCP method, however, belongs to the Hausdorff 
class (Bourmistrova, 2000). For this reason, it is asymptotically 
optimal with respect to the order of the number of vertices. Though 
the MMCP method, in contrast to the MCP method, requires more, 
than one evaluation of the support function on iteration, it was 
proved (Bourmistrova, 2000) that it has the asymptotically optimal 
number of evaluations of the support function, too.

Computational experiments and practical use of the methods 
show that they provide an effective tool for approximation of 
compact convex bodies for m< 8, if the approximated ellipsoid is 
not too flat (the asphericity is less than 50). Approximation of two-
to six- dimensional ellipsoids was explored (Dzholdybaeva and 
Kamenev, 1992, and Bourmistrova, 1999). Ellipsoids provide the 
bodies, polyhedral approximation of which is a pretty complicated 
task. Therefore study of the properties their approximation is very 
educative. In particular, the class of ellipsoids includes the sphere 
that is the most challenging object for approximation in Hausdorff 
metrics. Experimental estimates for the asymptotic efficiency of the 
method were computed and compared with the theoretical 
estimates. The results of theoretical analysis were confirmed, and 
the convergence constants were estimated. In particular, it turned 
out that the experimental asymptotic efficiency of the ER method is 
independent of the shape of the body being approximated and is 
greater than 0.5 for m > 2. Therefore, the above estimate of the 
asymptotic efficiency hopefully can be improved for m > 2.
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Experimental comparison of the modified MCP method with 
the original MCP method was carried out, too. It was clear from the 
very beginning that the ER method is able to construct the 
polytopes that are better than the polytopes constructed by the 
modified MCP method. However, it turned that the asymptotic 
efficiency of all the methods is fairly the same. It turned that 
number of support function evaluation per iteration in the modified 
MCP method is only 3.5 times greater than for the original MCP 
method for β < 0.7. This number is much greater in the ER method. 
In general, the analysis of the experimental results helped to 
recommend the value = 0.4 for approximation of bodies with a 
sufficiently smooth boundary.

As we have already said, the problem that is solved at Step 1 of 
the modified MCP method may require much time. The comparison 
of the MMCP method with the ER method was carried out on the 
basis of problems studied in the framework of the DSS described in 
Section 3.3. It turned that at least for some of the multiple criteria 
problems the MMCP method required less time than the ER 
method. For example, in the five-criterion problem that was used to 
describe implementation of the DSS, approximating the EPH with 
the precision of 1% required about four times less time in the case 
of MMCP than in the case of the ER method.

Important results were obtained for approximation of the bodies 
with non-smooth boundary, but these results are beyond the scope 
of book (see Kamenev 1992, 1994, 1999, 2000, as well as 
Bourmistrova, 2000). We can add that the adaptive methods for the 
polyhedral approximation of convex compact bodies offer a way to 
estimate several characteristics of convex bodies, such as volume, 
surface volume, and other Minkowski measures (Leichtweiss, 
1980). However, these matters lie outside the scope of the book, 
too.
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Constructing of convex hull of a polytope and a point
We now consider the second step of the incremental scheme; 

that is, constructing the convex hull of a polytope and a point. The 
first scheme for constructing of conv {p*, Pk} was introduced by 
Bushenkov (1981) in the framework of the PER method (it is 
described in Section 4.1). The scheme was based on the ideas that 
are now called the beneath-beyond method (Preparata and Shamos, 
1985). It is based on the theorem by McMullen and Shephard 
(1971). We describe the idea the McMullen-Shephard theorem on 
the basis of a three-dimensional example.

Suppose that one needs to construct the faces of the convex hull 
of polytope ABCDEF and point G (Figure 4.2.1 a). It is clear that 
the convex hull will include all faces of the original polytope 
invisible from point G (that is, ABCD, BCE, CDE, DEF and 
ADF). However, it will not include any of the faces visible from 
point G (that is, ABF and BEF, which are shown shaded in 
Figure). Instead, the convex hull will acquire new faces (Figure 
4.2.1 b). These new faces are the faces of a minimal cone whose 
apex is located at G and contains the polytope ABCDEF. Each 

Figure 4.2.1. The beneath-beyond method
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such face lies in a plane passing through the edge of the polytope 
lying at the boundary between the visible and invisible parts of the 
polytope's surface. It is clear that the boundary between the visible 
and invisible parts consists of intersections of pairs of adjacent 
faces of the polytope, one being visible and another being invisible. 
For example, the boundary in Figure 4.2.1 consists of the edges AB, 
BE, EF, and FA. Say, the edge BE is the intersection of the visible 
face BEF and of the invisible face BCE. The new face BEG passes 
through the edge BE. This scheme can be easily generalized to a 
space of an arbitrary dimension m if we recall that the boundary 
between the parts of the polytope that are visible and invisible from 
a point in Rm consists of m- 2 dimensional faces.

Particular methods that implement the beneath-beyond scheme 
differ in the way they solve the three following problems:

� How to determine whether a facet is visible from a point;

� How to determine whether two facets are adjacent or not; and

� How to transform the representation of the polytope into the 
convex hull.

The manner in which the above problems can be solved 
depends on the representation of the polytope. Within the 
framework of the FGM, we need a polytope to be described as the 
solution set of an inequality system. Such representation of 
polytopes was used by Bushenkov in the PER method, which 
included constructing the multidimensional convex hulls. The 
method due to Bushenkov seems to be the first published method 
based on the beneath-beyond scheme and implemented in the form 
of working software.

A bit later than Bushenkov, but independently of him, 
alternative methods based on the beneath-beyond scheme were 
proposed in unpublished papers of Kallay and Seidel who solve the 
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above three problems in a different way. A description of the 
methods proposed in (Kallay, 1981) and (Seidel, 1981) can be 
found in (Preparata and Shamos, 1985). To represent a polytope, 
Kallay stores the coordinates of its vertices and a complete 
combinatorial structure of the polytope as an incidence graph 
showing the affiliation of polytope faces of all dimensions. To say 
whether a face is visible or not, it is necessary to determine the 
orientation of the half-space whose boundary passes through the 
vertices of the face relative to the point being attached. The 
adjacency of facets can be readily determined from the incidence 
graph. A rather sophisticated combinatorial procedure is proposed 
for transforming the representation of the polytope. The Seidel 
method is the dual of the Kallay method; it is optimal with respect 
to the number of operations in spaces of even dimensions. We 
know nothing about how successful the two methods have been in 
practical applications.

A new method that continues the development of the method 
due to Bushenkov is used now in the framework of the FGM as a 
part of the ER method, MCP and MMCP methods. The new 
method was proposed by Chernykh (1988). Though the method due 
to Chernykh can be applied in the case of a sequence of vertices 
arriving one after another, we start its description by considering 
the construction of a convex hull for a specified collection of s
points {v1, v2, ... , vs} ⊂ Rm . Once again, the convex hull must be 
constructed in the form of the solution set of a linear inequality 
system. By definition, the point y ∈ Rm belongs to a convex hull of 
the above points if there exist values λ1, λ2,..., λs such that
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Consider the space Rs+m of variables λ1, λ2,..., λs and y. Then, 
the system (2.4) specifies a polyhedral set in this space. According 
to the definition of the projection, the convex hull of points {v1, v2, 
..., vs} is the projection of the set into the space Rm of variables y. 
Therefore, in order to construct the desired convex hull, one can 
eliminate the variables λ from the system (2.4).

We eliminate the variables λ from the system (2.4) in the same 
order as they are numbered. The first m+l variables λ1, λ2, ... , λm+1
can be eliminated from the system by expressing them in terms of 
the other variables and using the equalities that the system (2.4) 
contains. The remaining variables can be eliminated by the method 
of reduced fundamental convolution described in Section 4.1.

Let us consider the resulting system obtained after the variables 
λ1, λ2, ... , λq, where q ≥ m+1, have been eliminated. The system 
provides, in effect, the description of the convex hull of the points 
v1, v2, ... , vq– it is only needed to equate the variables λq+1,…, λs to 
zero in it (see Chernykh, 1988, for details). The excluding the next 
variable λq+1 from the resulting system is equivalent to attaching a 
point vq+1 to the convex hull of the points v1, v2, ... , vq. So, when 
constructing a convex hull, the information about the points that 
have yet to be attached is not needed. Therefore, it is not necessary 
to know the future points themselves or even their number. Thus, 
this method can be used for constructing the polytope sequentially.

Application of the reduced fundamental convolution method 
(see Section 4.1) for the excluding the variables λ1, λ2,..., λs
transforms the described method into the method based on the 
beneath-beyond scheme. The inequality index storage used in the 
reduced fundamental convolution method is equivalent to a partial 
storage of combinatorial structure of the intermediate polytope. 
Therefore, a polytope is, in effect, stored as a system of 
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inequalities, each of which corresponds to a face of the polytope. 
Also, each inequality is stored along with information that gives the 
numbers of the vertices, which belong to particular faces. This 
information helps to solve three problems listed above. For 
example, the question as to whether or not a given face is visible 
from a new point is answered by inserting the point being attached 
in the linear inequality corresponding to that face.

The crucial point of the method is now the choice of adjacent 
faces in the convex hull of points v1, v2, ... , vq with a view to 
constructing a new face passing through their intersection and the 
point vq+1. If the variables λ were eliminated from system (2.4) by 
the Fourier method, this would produce combinations of all pairs of 
inequalities corresponding to one visible and one invisible face 
(irrespective of their adjacency). Naturally, the number of 
incidental inequalities would then increase catastrophically, and the 
method would no longer be of the beneath-beyond type. When the 
reduced fundamental convolution is used, the pairs that are 
combined correspond to adjacent faces; that is, they are combined 
in compliance with the beneath-beyond scheme. For this reason, the 
use of the reduced fundamental convolution in this method cannot 
produce redundant inequalities. The representation of a polytope is 
a fairly simple task. The transformation of indices poses no 
difficulty at all, and the coefficients of the inequality corresponding 
to a new face are calculated as a linear combination with positive 
coefficients of the two inequalities representing two adjacent faces.

The Chernykh method has a higher theoretical order of time 
complexity than the purely combinatorial method due to Kallay, 
because all possible pairs of visible and invisible faces have to be 
tested in order to establish the adjacency. Within the FGM, 
however, the time required for operation of the Chernykh method is 
quite satisfactory because the matter of adjacency is resolved by a 
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small number of fast operations. Since m is small in the FGM (not 
larger than seven or eight), the method permits convex hulls for sets 
consisting of several hundred points to be constructed even on a 
personal computer.

With the Bushenkov method, in order to attach a point for the 
construction of new faces, one has to select the vertices V = { v1, v2, 
... , vq }, which belong to the visible faces of the polytope. In the 
original version of the method described in section 4.1, the storing 
of the combinatorial structure of the polytope was not used. 
Therefore, the collection of vertices was found by a direct inserting 
of all vertices of the polytope in violated inequalities of the system. 
Then, the faces of the cone were computed upon the excluding the 
auxiliary variables ,,..,2,1, rii =λ  from the system of equalities and 
inequalities defining the cone,
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where ,,...,2,1, rii =ν  are the vertices that belong to the violated 
inequalities. The reduced fundamental convolution method was 
used for the excluding the variables rii ,..,2,1, =λ .

Let us compare the methods due to Bushenkov and Chernykh. 
The Chernykh method has several advantages. First, it has a 
simpler structure and requires less time and memory. In contrast, 
the attachment of one vertex to the hull in the Bushenkov method 
makes it necessary to eliminate from the auxiliary system (2.5) the 
entire set of variables λi whose number is equal to the number of 
vertices belonging to the visible faces. Secondly, the Chernykh 
method is more reliable because a technique was developed to 
control the inaccuracy due to the rounded-off errors (Chernykh, 
1988). In studying this matter, it has proved convenient to use the 
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classical concepts of combinatorial topology and to consider the 
collection of faces of a polytope as a cycle of an abstract simplicial 
complex. Owing to this device it has been possible to readily prove 
the validity of the simplest a posteriori estimate of the error in the 
construction of the convex hull produced by inserting all of its 
vertices in all inequalities of the resultant system approximately 
describing the hull. Note that for an accuracy check, it is necessary 
to store the coordinates of the vertices of the convex hull in 
memory (in contrast to the Bushenkov method, this is not required 
for operation of the main part of the Chernykh method).

However, the Bushenkov method has several advantages. It 
does not require implementing the adjacency test for all pairs 
composed of visible and invisible faces. In effect, when one more 
vertex is attached to the hull, only the visible part and not the entire 
polytope needs to be considered in the Bushenkov method. Because 
of this, the task of constructing the hull of a system of points is 
decomposed into a sequence of local subtasks. In solving each of 
these subtasks, there is no need to consider the current polytope as a 
whole. Although this property of the Bushenkov method can be 
important when the number of faces is great, this decomposition of 
the task makes it difficult to maintain the correct combinatorial 
structure of the polytope, which is essential to controlling the 
accuracy when rounded-off errors are present.

It is worth to note that fast methods for on-line display of 
decision maps have also been developed (Chernykh and Kamenev, 
1993).

4.3. Feasible Goals Method for non-linear models
Here we describe the mathematical basis of the FGM in the 

non-linear case. Like in the previous section, let X be the set of 
feasible decisions that belongs to a decision space Rn. However, 
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now the set X is described by non-linear restrictions and may be 
non-convex. The mapping f: Rn Rm that relates decisions to m
criterion values may be non-linear, too. Therefore, the set f(X) is 
usually non-convex, and this evidence is the crucial difficulty in its 
approximation and visualization in the non-linear case. Say, 
approximation by a single convex polytope cannot be used. 
Moreover, because of possible sophisticated nature of the output of 
the non-linear models, the direct computing of the output is often 
the only feasible way of the model exploration. Optimization 
techniques based on application of analytically calculated gradients 
cannot be applied in a general non-linear case.

The method described herein was introduced in the paper by 
Kamenev and Kondrat’ev (1992) and described in the book (Lotov 
et al., 1999b). It is based on simulation of random decisions, i.e. on 
computing m-dimensional outputs of random points from the set X. 
In contrast to traditional approaches (see, for example, Statnikov 
and Matusov, 1995), which are based on computing the outputs of 
random feasible decisions, we do not display a list of feasible 
inputs and related outputs to user. Instead, the outputs provide the 
basis for evaluation and display of the set f(X).

Concept of the method
The method is based on the global sampling of the set X, i.e. on 

generation of uniformly distributed random points from the set X
and on computing their outputs. Selecting a small part of output 
points and covering the set f(X) by a system of balls or boxes with 
centers in the selected points are used. The output points are 
selected in an adaptive way. The radii of balls (edges of boxes) 
located in the selected output points are specified in such a way that 
the resulting system of balls (boxes) approximates the set f(X) with 
a desired degree of precision. Collections of two-criterion slices of 
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such approximation can be displayed on-line by personal computers 
and workstations reasonably fast.

It is assumed that Rn and Rm are linear metric spaces. Let d(v, w) 
be the distance between the points v and w in Rm. It can be a usual 
Euclidian distance or, say, the Tchebycheff metrics

d(v, w) = max { λi |vi - wi|: i = 1, 2, ... , m },
where λi are positive values. Let  > 0. We denote by (Q)  the -
neighborhood of the set Q; that is, the set of points distant from Q
less than . The -neighborhood is a ball with the radius  in the 
case of the Euclidian distance. In the case of the Tchebycheff 
metrics, it is a box (parallelotop) with edges that are parallel to the 
coordinate axes.

The set X ∈ Rn is supposed to be compact and measurable, i.e. 
the notion of the volume of the set X has a sense. Moreover, we 
assume that the set X is bodily, i.e. its volume is not zero. The 
mapping f: Rn → Rm is assumed to be continuous on X. Then, the 
set f(X) is compact, too. Note that one may use a finite number of 
such sets X to describe important situations with non-continuous 
mappings f: Rn → Rm, but this topic is beyond the scope of this 
book.

Let us consider the uniform measure µ on the set X, i.e. such a 
measure that the measure of any measurable subset of X coincides 
with its volume. For certainty, we require that µ (X) = 1. We use the 
uniform measure, since the generated points are assumed to be 
uniformly distributed over the set X. However, more general 
measures can be applied, too.

As it was said earlier, a particular case of approximation of the 
set Y = f(X) is considered here – its covering by a finite variety of 
neighborhoods of its points. The finite variety of centers of the 
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neighborhoods is named the covering base and is denoted by T. The 
set (T)s is then the covering of the set Y by neighborhoods of the 
radius s located in the points of the covering base. For a given 
radius s, the notion of completeness ηT(s) of a covering (T)s is 
defined as

 ηT(s) = µ (f -1((T)s ∩ Y)),                (3.1)
i.e. ηT(s) is the measure of the subset of points from X which 
outputs belong to (T)s. Since µ (X) = 1, we have that ηT(s) is less or 
equal to one. The dependence of ηT(s) on the radius s is said to be 
the function of completeness of the given covering (T)s. It is clear 
that the completeness function depends on the radius s in a 
monotonic way – the function is not decreasing while the radius is 
increasing. Moreover, since the set Y is confined, the function ηT(s) 
achieves its maximal value (one) at some radius s.

Let and η be some positive numbers, η < 1. We consider here 
the problem of constructing such covering base T, which satisfies 
the requirement

ηT(ε) ≥ η. (3.2)
The requirement (3.2) implies that the set (T)  contains the 

output of the η-th proportion of the set X. It means that the set (T)
is not very poor in comparison with Y for values of η  that are close 
to one. Simultaneously, since the points of the covering base belong 
to Y, the distance of any point y ∈ (T)  from the set Y is less than ε. 
Therefore, the set (T)  is not very fuzzy for small values of ε.

Several conflicting goals must be taken into account in the 
process of constructing a covering of the set Y. First of all, as it was 
said above, the covering will be used in the process of on-line 
visualization of the set Y using two-criterion slices of the covering. 
That is why one needs a covering by a relatively small number of 
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neighborhoods for a fast display of such two-criterion slices. On the 
other hand, it is desirable to construct a covering base T, for which 
the requirement (3.2) is satisfied for sufficiently small values of ε
and 1-η . Surely, these two goals are in conflict.

The problem of constructing a covering base T, which satisfies 
(3.2) for small values of ε and 1-η, can be solved in a precise way 
only for extremely simple models. For this reason, empirical 
methods must be applied for both constructing the covering base 
and testing the condition (3.2).

Constructing a covering base
We use the following adaptive algorithm for constructing a 

covering base T. At an iteration of the algorithm, N random 
independent points from X are generated and associated output 
points are computed. The output point most distanced from the 
current covering base is included into the base. Before the 
algorithm starts, user has to specify the number N of random points 
from X that are generated at an iteration and the maximum number 
M of points in the covering base T.

Algorithm for constructing a covering base

Specify the number of generated points N and the number of 
iterations M.

Initial stage. Generate an initial point from the set X. The initial 
covering base T is provided by its output.

Main stage consists of the following identical M iterations:

− generate N random uniformly distributed points from X and 
compute their output;
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− add to the covering base the output, which is most distant from 
the current covering base T.

It is important to stress that the algorithm has an adaptive 
nature: the most distanced point is added to the covering base. The 
same strategy is used in methods for approximating the convex 
bodies (Lotov et al., 1999b). It seems that the value of N can be 
specified in a reasonable way on the basis of the desired precision 
ε, completeness η and, perhaps, dimension of criterion space m.
However, in contrast to the convex case, a theory for specification 
of the value of N has not been developed yet. For this reason, an 
empirical testing of the completeness of a current covering base is 
performed at any iteration of the algorithm. The same N random 
points from X are used for it. Due to the empirical testing of the 
completeness at any iteration, the value of M plays minor role – the 
process can be stopped after a covering with the desired properties 
has been found.

Empirical testing a covering base
Empirical testing of the condition (3.2) is based on its 
transformation into another form that is convenient for empirical 
consideration. It is clear that an empirical testing can provide 
results with certain reliability χ, which is less than one. So, instead 
of the condition (3.2), the following condition of a sufficient quality 
of the covering base could be tested

P { ηT(ε) > η } ≥ χ ,                               (3.3)
where 0 < χ < 1. Moreover, another modification of the test is 
reasonable – it turned to be convenient to estimate the 
completeness function ηT(s) for all positive values of the radius s.

Indeed, the form of the set Y = f(X) is not known in advance, 
and so the desired values of ε and η can be specified in advance 



192

only approximately. For this reason, the display of the 
completeness function ηT(s) helps user to assess the convergence 
speed and to make a decision on whether to complete the 
approximation process at some iteration. It may happen that a 
combination of radius and completeness displayed by the graph of 
the completeness function is already satisfactory. Therefore, instead 
of automatic testing the condition (3.3), another problem is solved: 
it is required to construct a functionηT(s) that satisfies

P {ηT(s) >ηT(s)} ≥ χ                             (3.4)
for any s > 0.

Let us consider a method for constructing such functionηT(s). 
Note that in accordance to the definition of the completeness (3.1), 
it holds for a given covering base T that

ηT(s) = P { d (f(x), T) < s },
i.e. the completeness function ηT(s) is the distribution function of 
the distance d (f(x), T) of the output f(x) of a random point x ∈ X 
from the covering base T. Therefore, empirical estimates of ηT(s)
can be obtained by statistical methods based on generation of 
independent random points from X.

Let us denote a sample of N random points from the set X by HN
= {x1, … , xN}. We denote

ηT
(N)(s) = n(s)/N

where n(s) is the number of points from HN, for which it holds 
d (f(x), T) < s. For a given s, the value ηT

(N)(s) is the sample 
(experimental) value of the completeness ηT(s), and so it can be 
used for estimation of the completeness ηT(s). We provide the 
related theorem without a proof.
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Theorem. For any s > 0 it holds

P {ηT(s) > ηT
(N)(s) – ∆} ≥ χ  (3.5)

where ∆ is given by

∆(χ,N) = (-ln (1-χ) / 2N)1/2.                           (3.6)
Comparing expression (3.5) with expression (3.4), we note that 

the difference ηT
(N)(s) – ∆(χ,N) can be used to estimate the value 

ofη(s).

Note that the inaccuracy ∆ does not depend neither on the 
covering base T, nor on the covering radius s. Due to this, 
expression (3.6) can be used for evaluation of the number N of 
random points required to estimate the completeness with a given 
accuracy and reliability. Say, one can choose the minimal number N
that satisfies

N ≥ -ln(1-χ)-1 / (2∆2). (3.7)
The next table contains the estimations of N depending on the 

values of ∆ and χ.

Table. Estimations of N (∆∆∆∆, χχχχ)

χχχχ \ ∆∆∆∆ 0.10 0.05 0.01

0.90 116 461 11513

0.95 150 600 14979

0.99 231 922 23026

The formulae (3.5)-(3.7) can be used in an algorithm for 
estimating the completeness function for a given covering base T. It 
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is supposed that the values of the reliability χ and the inaccuracy ∆  
were specified.

Algorithm for estimating the completeness function

Formula (3.7) is used for evaluation of the number N needed to 
estimate the completeness function for the covering base T with the 
given values of χ and ∆ .

1. N random independent points from X are generated; their 
outputs are computed;

2. The empirical completeness function ηT
(N)(s) is constructed for 

the computed variety of the outputs;

3. Graphs of the empirical completeness function ηT
(N)(s) and the 

estimate of precise completeness function ηT(s) are displayed.

The algorithms for adaptive constructing a covering base and 
for estimating the completeness function of a constructed covering 
base are two independent algorithms. However, the estimation 
algorithm can be used for specification of the number of points N
that must be generated on each iteration. Information provided by 
the completeness estimation algorithm can be displayed to user. 
Due to this, user will be able to monitor the process of 
approximation the set f(X) and to intervene into the process if 
needed. In this case, the original values of process parameters M, ε 
and η will play a minor role in this process. However, it is possible 
to carry out the covering process without user. In this case the 
values of the process parameters can be used as termination 
conditions.

It can be shown that for any compact measurable bodily set X
and any piecewise continuous mapping f, the algorithm with a 
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properly specified number N(1-η,χ) and infinite M would construct 
the covering base T satisfying (3.3) in a finite number of iterations 
for any values of ε > 0, 0 < χ < 1 and 0 < η < 1 , if user does not 
stop the algorithm earlier. Other algorithms, which require a 
smaller number of simulation experiments, may be proposed. They 
are, however, outside the scope of this book (see Kamenev and 
Kondrat’ev, 1992).

Figure 4.3.1. Black and white copy of a color display of a collection of 
slices for three criteria. Two criteria (to be minimized) are given on axes. 
The intervals of the value of the third criterion are given by shadings (by 

colors on the display).
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Visualization, goal identification and decision computing
In the visualization process, it is convenient to use the 

Tchebycheff metrics. As it was said above, in this case a covering 
neighborhood is a box with edges parallel to the coordinate axes. 
Due to this, two-dimensional slices of the covering set (T)s can be 
computed and displayed fairly fast. Collections of slices are usually 
displayed. The value of the third criterion, which is associated with 
color, change from slice to slice. The correspondence between the 
value of the third criterion and color is provided in the palette 
located under the picture. In our book, we do not provide examples 
of exploration of the systems given by non-linear models (such 
examples are provided in Lotov et al., 1997 and 1999). For this 
reason, we illustrate the application of the method by an example. 
In Figure 4.3.1 provides a black and white copy of display with a 
collection of slices for a non-linear model.

User can explore different pictures of this kind displayed on-
line and identify a preferable combination of criterion values 
(feasible goal vector) in a picture. Then, a point from the covering 
base T can be found, which contains to the identified goal vector in 
its s-neighborhood. It is possible to find a related point of the 
original set X: for the points of the covering base T, original points 
x from X are usually saved, too.

The large number of simulations needed to construct a 
reasonably precise covering base can be performed using the so-
called meta-computing platforms. A meta-computing platform is a 
collection of computers (and possibly other resources such as 
visualization and storage devices) that are geographically 
distributed, but networked in various ways. Meta-computing 
platforms are inexpensive since they utilize the idle time of the 
collection of workstations, which is essentially free. Despite their 
low cost, meta-computing platforms are potentially very powerful. 
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However, they have features that make them much more difficult to 
program than traditional parallel computers. In meta-computing 
platforms, the number of processors available may vary over time, 
processors may disappear without any notice, communication 
latency between any given pair of processors may be high, variable 
and unpredictable and, finally, processors may differ in their CPU 
speed or amount of memory.

Usually, in order to implement a method on a meta-computing 
platform, one has to transform it into a special form. It is important 
to note that the approximation method described in this Section has 
this kind of a form. Due to the randomization of the simulation 
input, particular simulation runs play no role: the statistical analysis 
depends on the number of computed random outputs collected at 
the coordinating computer, but not on particular computers the 
outputs were computed at. Therefore, the dynamic availability of 
processors, their unreliability, heterogeneity and possible poor 
communication play no role for the FGM.

4.4. Approximating the Edgeworth-Pareto Hull
Methods for constructing or approximating the EPH are 

outlined in this Section. Once again, we assume that user is 
interested in decreasing the criterion values, i.e. a criterion point y′
is better than a criterion point y, if and only if y′ ≤ y and y′ ≠ y. In 
this case the non-dominated frontier P(Y) of the set Y is of interest 
and the EPH of Y defined as

Y* = Y + Rm
+ ,

where Rm
+  is the non-negative cone of Rm, can be used instead of Y. 

Exploration of the EPH instead of Y is based on the important fact 
that the non-dominated frontiers of the sets Y and Y* coincide, but 
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the dominated frontiers disappear in Y*. Note that the set Y* can be 
represented in the equivalent form

Y* = {y ∈ Rm: y ≤ f(x), where x ∈ X }.

Constructing the EPH for linear models
We start with constructing the EPH for the models studied in 

Section 5.1. It means that the set X is polyhedral and the mapping f
is linear. Let the linear inequality system that specifies the set X be

X = {x ∈ Rn: Hx ≤ h},
where H is a given matrix and h is a given vector. Let the mapping f
be specified by a matrix F, such that

f(x) = Fx.
We need to construct the set

Y* = { y ∈ Rm : y ≤ Fx, Hx ≤ h }                         (4.1)
in the form

Q* = { y ∈ Rm : D*y ≤ d*},                            (4.2)
i.e. we need to construct the matrix D* and the vector d*. One can 
see that the only difference of the above formula from the system 
(1.1)-(1.2) considered in Section 4.1 consists in the presence of 
inequality instead of the equality between the vector  y and the 
matrix F (4.1). Therefore, as in Section 4.1, we can consider the 
graph

Z = {(x,y) ∈ Rn ×××× Rm: y ≤ Fx, Hx ≤ h }
and construct its projection onto Rm, which coincides with the set 
Y*. Therefore, the set Y* can be found by the convolution methods. 
Such methods have been described already in Section 4.1. All 
advantages and disadvantages of them have been discussed. They 
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are valid here, too. Such approach to the EPH constructing for 
linear models was proposed in (Lotov, 1983). However, it has not 
found a broad application because of development of the methods 
for approximation of the EPH on the basis of polyhedral 
approximation of the convex compact bodies. The visible 
advantages of the convolution methods, which consist in the 
opportunity to consider a large number of criteria and consider the 
non-confined polyhedral sets, turned out to be not so important in 
real-life problems. Let us consider the methods based on polyhedral 
approximation of the convex compact bodies.

Polyhedral approximation of convex EPH
The methods described in this sub-section are based on 

approximation of Y* by the sum of a polytope and of the non-
negative cone Rm

+ . It is supposed that the set Y is bounded, and so 
the set Y* can be approximated by the sum of a bounded body and 
cone Rm

+ . We do not require convexity of the set Y, but the set Y* is 
supposed to be convex. In this case, the set Y* can be approximated 
by the sum of the cone Rm

+ and a polytope. In addition, we assume 
that it is possible to evaluate the support function of the set Y* for a 
finite number of directions u that belong to the unit sphere of 
directions

S = {u ∈ Rm: <u, u> = 1}.
As in Section 4.2, adaptive iterative methods are used that are 

based on the incremental scheme. Some point on the frontier of the 
set Y* is selected at an iteration. The selecting of the point can be 
based on the ideas of ER, MCM or MMCM methods, i.e. on the 
evaluation of the support function of the set Y* for a finite number 
of directions. Then the convex hull of the selected point and of the 
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previous approximation by the sum of a polytope and the cone Rm
+

is constructed in the form of the linear inequality system.

Note that the sum of a polytope and the cone Rm
+  can be 

considered as the EPH of a system of points. Therefore the second 
step of an iteration can be considered as constructing the EPH for 
the previous EPH and a point outside it. This idea was proposed in 
the paper by Chernykh (1995). It is based on the development of 
the method for constructing the convex hull of points, which has 
been described already in Section 4.2.

Let us consider a finite set of points V = {v1, v2, ... , vs} ∈ Rm. 
The EPH for these points is defined as

}....,,2,1,0,1,:{)(conv
11

sivyyV i

s

i
i

s

i

i
i

m
p =≥=≤∈= ∑∑

==
λλλR

Note that this definition differs from the definition of convex 
hull only by inequality at the variable y. Therefore, the polyhedral 
description (4.2) of this set can be found by convolution methods, 
too. Eliminating of the variables  in Chernikov convolution 
methods corresponds to iterative constructing of the EPH of a point 
and of the previous EPH. Additional details of the methods can be 
found in (Chernykh, 1995).

Non-linear case
Approximating the EPH in the non-linear case can be based on 

a simple substitution of the neighborhoods by the non-negative 
cones Rm

+  (or other cones depending on user’s preferences) with 
apexes located in the covering base points. Special algorithms that 
are modifications of the above algorithms were developed for 
approximating the EPH. This topic is, however, outside of the 
scope of this book.


