|
Поиск атрибутный
| |
|
|
|
Гончаров Сергей Савостьянович
Наиболее важные результаты получены в теории алгоритмов и теории моделей. Им построена теория алгоритмической размерности, в основе которой лежит принадлежащий ему фундаментальный результат о существовании неустойчивых моделей конечной алгоритмической размерности. Совместно с учеными из США Р.Шором, Б.Хусаиновым, П.Чолаком в 1995 г. получено решение старой проблемы об автоустойчивости конечных константных обогащений автоустойчивых моделей.
С.С.Гончаровым развита теория конструктивных булевых алгебр.
Внесен крупный вклад в теорию разрешимых моделей, где установлен фундаментальный критерий разрешимости однородных моделей.
Решена проблема характеризации аксиом классов с сильными эпиморфизмами и сильными гомоморфизмами, поставленная академиком А.И.Мальцевым в 1961 г.
В области классической теории алгоритмов он внес фундаментальный вклад в теорию вычислимых нумераций, им разработан новый метод построения вычислимых нумераций, позволивший решить ряд проблем о числе нумераций Фридберга.
Совместно с его учениками решена проблема сложности описания автоустойчивости разрешимых и ограниченно разрешимых моделей (2013-2015 гг.)
Под его научным руководством разрабатывается комплекс программ для обработки потоковой информации в интересах безопасности. Ведутся исследования по проблемам вычислимых нумераций и полурешеток Роджерса, тьюринговым степеням автоустойчивости, определимости и вычислимости в рамках семантического программирования.
С.С.Гончаров ‒ создатель и руководитель ведущей научной школы по теории вычислимости и математической логике, с 2003 года по настоящее время поддержанной грантами Президента РФ для ведущих научных школ. Ключевые слова математическая логика, вычислимость, модель, разрешимые модели, теория нумераций, семантическое программирование |
|