|
Поиск атрибутный
| |
|
|
|
Трещев Дмитрий Валерьевич
Область научных интересов Д.В.Трещева – динамика гамильтоновых систем и их дискретных аналогов, включая проблемы интегрируемости, устойчивости, хаоса, теорию возмущений, теорию КАМ, диффузию Арнольда.
Его основные научные результаты состоят в следующем:
- найдены все интегрируемые системы в классе гамильтоновых (классических или квантовых) систем с торическим пространством положений, плоской кинетической энергией, и потенциалом в виде тригонометрического полинома, получены обобщения на случай систем с экспоненциальным взаимодействием (обобщенных цепочек Тоды) (совместно с В.В.Козловым);
- установлено, что резонансные торы интегрируемых по Лиувиллю гамильтоновых систем при возмущении распадаются не полностью: некоторые их нерезонансные подторы меньшей размерности, как правило, сохраняются и становятся частично нормально гиперболическими,
- предложен эффективный метод исследования экспоненциально малых эффектов в системах с быстрыми и медленными переменными, вычислены асимптотики экспоненциально малого расщепления сепаратрис в маятнике с быстро колеблющейся точкой подвеса и других системах;
- получены оценки (как сверху, так и снизу) для ширины стохастического слоя в гамильтоновых системах с двумя степенями свободы и в двумерных симплектических отображениях;
- установлена типичность явлений типа диффузии Арнольда в так называемых, априори неустойчивых гамильтоновых системах близких к интегрируемым: получена неулучшаемая оценка для скорости эволюции переменных "действие";
- в рамках теории ансамблей Гиббса развита неравновесная статистическая механика (совместно с В.В. Козловым);
- показано, что при потенциальном взаимодействии конечномерной гамильтоновой системы с линейной бесконечномерной, как правило, возникает эффективная диссипация, ведущая к простой финальной динамике.
- получены далекие обобщения формулы Хилла, связывающей геометрические и динамические свойства периодической орбиты лагранжевой системы (совместно с С.В.Болотиным);
- построена теория антиинтегрируемого предела (совместно с С.В. Болотиным).
Ключевые слова гамильтоновы системы, диффузия Арнольда, метод усреднения, хаотическая динамика |
|