|
Поиск атрибутный
| |
|
|
|
Potentials for binary relations and systems of reactions
Аннотация
Several sets of (mostly algebraic) conditions on a strategic game guaranteeing nice behaviour of best-reply processes are established. For example: all strategies are scalar, every player's utility only depends on his own choice and the sum of the partners' choices, and best replies are all increasing or all decreasing. An abstract approach to the problem is developed, formulated in terms of binary relations on a compact metric space, so it is, in principle, applicable to any equilibrium concept which can be defined as a maximizer for a binary relation. Ключевые слова
теория игр, экономическое поведение, стратегическая игра, бинарные отношения, системы реакций, потенциалы систем реакций, равновесие по Нэшу, теорема о неподвижной точке, теорема Брауэра. |
|