Российская академия наук    
     
   

Общая информация


 
Login Print view Help 

Поиск атрибутный
  Организаций
  Персон

Структура учреждений РАН




Теория и практика применения оптимальных методов аппроксимации выпуклых тел многогранниками

 Аннотация

    Аппроксимация является стандартным средством в теории вы- пуклых тел. Первые аппроксимационные теоремы восходят к Минковскому. В частности, им было доказано, что для каждого выпуклого тела можно найти сходящуюся последовательность выпуклых полиэдров. Это возможность широко использовалась для получения различных теоретических результатов, связанных с геометрией выпуклых поверхностей. Однако долгое время интерес к задаче был сугубо теоретическим.

    В настоящее время задача аппроксимации выпуклых тел многогранниками возникает во многих приложениях: при исследовании управляемых систем, в математическом программировании, кодировании изображений, дизайне и др. Принципиальное значение практические алгоритмы аппроксимации выпуклых тел многогранниками имеют в задачах принятия решений на основе метода достижимых целей

 Ключевые слова

    метод достижимых целей, аппроксимация выпуклых тел многогранниками
  Полный текст
Полный текст публикации     в формате pdf


Последние изменения: 27.02.2001


119991 Москва, Ленинский просп., 14
Телефон: (495) 938-0309 (Справ. бюро); Факс: (495) 954-3320 (Лен.пр.14), (495) 938-1844 (Лен.пр,32а)
На главную страницу
В начало страницы
© РАН 2007